[1] 冼伟光, 周丽, 唐洪辉, 等. 不同林龄针阔混交林土壤生态化学计量特征[J]. 广东林业科技, 2015, 31(1):1−6.

Xian W G, Zhou L, Tang H H, et al. Soil ecological stoichiometry of conifer-broadleaved plantations of different age in southern subtropical region[J]. Guangdong Forestry Science and Technology, 2015, 31(1): 1−6.
[2] 张光德, 赵传燕, 戎战磊, 等. 祁连山中部不同植被类型土壤生态化学计量特征研究[J]. 兰州大学学报(自然科学版), 2019, 55(4):533−540.

Zhang G D, Zhao C Y, Rong Z L, et al. Ecological stoichiometry of soils with different vegetation types in the middle part of the Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(4): 533−540.
[3] 王璐, 喻阳华, 邢容容, 等. 喀斯特高原山地区主要人工林土壤生态化学计量特征[J]. 南方农业学报, 2017, 48(8):1388−1394. doi:  10.3969/j.issn.2095-1191.2017.08.09.

Wang L, Yu Y H, Xing R R, et al. Ecological stoichiometry characteristics of soils from main plantations in karst plateau mountainous area[J]. Journal of Southern Agriculture, 2017, 48(8): 1388−1394. doi:  10.3969/j.issn.2095-1191.2017.08.09.
[4] Zhao F, Kang D, Han X, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering, 2015, 74: 415−422. doi:  10.1016/j.ecoleng.2014.11.010.
[5] 庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17−23. doi:  10.11924/j.issn.1000-6850.2014-2200.

Pang S J, Zhang P, Jia H Y, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 17−23. doi:  10.11924/j.issn.1000-6850.2014-2200.
[6] Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2009, 98(1−3): 139−151.
[7] 吴建平. 黄土丘陵区典型退耕植被土壤化学计量特征[D]. 杨凌: 西北农林科技大学, 2016.

Wu J P. Soil stoichiometry under conversion of grain to green program in loess hilly region[D]. Yangling: Northwest A&F University, 2016.
[8] 赵佰礼, 穆兴民, 高鹏, 等. 黄土丘陵沟壑区不同退耕草地土壤水分研究[J]. 水土保持研究, 2019, 26(4):111−115.

Zhao B L, Mu X M, Gao P, et al. Study on soil moisture in two returning farm-land patterns in gully and hilly region of the Loess Plateau[J]. Research of Soil and Water Conservation, 2019, 26(4): 111−115.
[9] 刘晶, 徐少君, 刘丽芬. 不同退耕方式对豫西黄土丘陵区土壤颗粒有机碳含量的影响[J]. 河南农业科学, 2015, 44(5):72−76.

Liu J, Xu S J, Liu L F. Effect of different reafforestation patterns on soil particulate organic carbon content in loess hilly region of western Henan[J]. Journal of Henan Agricultural Sciences, 2015, 44(5): 72−76.
[10] 陈青松, 李婷, 张世熔, 等. 城乡交错带土壤氮素空间分布及其影响因素[J]. 生态学报, 2016, 36(8):2133−2141.

Chen Q S, Li T, Zhang S R, et al. Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors[J]. Acta Ecologica Sinica, 2016, 36(8): 2133−2141.
[11] 邢丹, 肖玖军, 王晓红, 等. 石漠化区退耕植桑地土壤养分与生态化学计量特征[J]. 西南农业学报, 2018, 31(7):1436−1443.

Xing D, Xiao J J, Wang X H, et al. Nutrients and ecological stoichiometry characteristics of soil from returning farmland to mulberry field in stony desertification area[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1436−1443.
[12] 陈鹏, 郭建英, 董智, 等. 达拉特旗砒砂岩裸露区退耕还林土壤生态化学计量分布[J]. 中国水土保持科学, 2020, 18(1):25−34.

Chen P, Guo J Y, Dong Z, et al. Eco-stoichiometric distribution of soil under grain for Green Project in Pisha sandstone exposed area of Dalad banner[J]. Science of Soil and Water Conservation, 2020, 18(1): 25−34.
[13] 梁爱华, 韩新辉, 张扬, 等. 纸坊沟流域退化土壤碳氮关系对植被恢复的时空响应[J]. 草地学报, 2013, 21(5):842−849. doi:  10.11733/j.issn.1007-0435.2013.05.002.

Liang A H, Han X H, Zhang Y, et al. Spatio-temporal response of soil carbon and nitrogen relation to the process of vegetation restoration in the gully region of Loess Plateau[J]. Acta Agrestia Sinica, 2013, 21(5): 842−849. doi:  10.11733/j.issn.1007-0435.2013.05.002.
[14] Li C, Zhao L, Sun P, et al. Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the loess hilly region of China[J]. PLoS ONE, 2016, 11(7): e0159075. doi:  10.1371/journal.pone.0159075.
[15] Fu B, Chen L, Ma K, et al. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shaanxi, China[J]. Catena, 2000, 39(1): 69−78. doi:  10.1016/S0341-8162(99)00084-3.
[16] 王莉, 林莎, 李远航, 等. 青海大通不同林地类型林下植被与土壤水分的关系[J]. 中国水土保持科学, 2019, 17(5):25−35.

Wang L, Lin S, Li Y H, et al. Relationship between understory vegetation and soil moisture in different forest types in Datong, Qinghai Province[J]. Science of Soil and Water Conservation, 2019, 17(5): 25−35.
[17] Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 223−243. doi:  10.1146/annurev-earth-063016-020552.
[18] 林莎, 贺康宁, 王莉, 等. 基于地统计学的黄土高寒区典型林地土壤水分盈亏状况研究[J]. 生态学报, 2020, 40(2):728−737.

Lin S, He K N, Wang L, et al. Soil moisture surplus and loss of typical forestland in loess alpine area by the geostatistical analyst method[J]. Acta Ecologica Sinica, 2020, 40(2): 728−737.
[19] 刘若莎, 王冬梅, 李平, 等. 青海高寒区典型人工林植物多样性、地上生物量特征及其相关性[J]. 生态学报, 2020, 40(2):692−700.

Liu R S, Wang D M, Li P, et al. Plant diversity, ground biomass characteristics and their relationships of typical plantations in the alpine region of Qinghai[J]. Acta Ecologica Sinica, 2020, 40(2): 692−700.
[20] 刘凯, 贺康宁, 王先棒. 青海高寒区不同密度白桦林枯落物水文效应[J]. 北京林业大学学报, 2018, 40(1):89−97.

Liu K, He K N, Wang X B. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89−97.
[21] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3):716−722.

Wang Z Q, Du L L, Zhao M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 716−722.
[22] 李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1610−1620.

Li P, Wang D M, Ding C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in loess alpine region[J]. Acta Ecologica Sinica, 2020, 40(5): 1610−1620.
[23] 刘运新, 陈之凤, 廖徯苏, 等. 大通县志[M]. 西宁: 青海人民出版社, 2020.

Liu Y X, Chen Z F, Liao X S, et al. Datong County annals[M]. Xining: Qinghai People’s Publishing House, 2020.
[24] 鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.

Bao S T. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[25] 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3):766−774.

Sun Q, Wang B, Zhou H P, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766−774.
[26] 李柏桥, 付玉, 李光录, 等. 退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响[J]. 干旱地区农业研究, 2017, 35(3):238−244. doi:  10.7606/j.issn.1000-7601.2017.03.37.

Li B Q, Fu Y, Li G L, et al. Effects of age and type of conversion from cropland to forest land and grassland on stability and organic carbon in soil aggregates[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 238−244. doi:  10.7606/j.issn.1000-7601.2017.03.37.
[27] Shi J, Cui L. Soil carbon change and its affecting factors following afforestation in China[J]. Landscape and Urban Planning, 2010, 98: 75−85. doi:  10.1016/j.landurbplan.2010.07.011.
[28] Wang Q, Wang S, Huang Y. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China[J]. Forest Ecology and Management, 2008, 255: 1210−1218. doi:  10.1016/j.foreco.2007.10.026.
[29] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi:  10.5846/stxb201212101772

Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi:  10.5846/stxb201212101772
[30] 张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片−凋落物−土壤生态化学计量特征[J]. 生态学报, 2018, 38(14):5087−5098.

Zhang P, Zhang G Q, Zhao Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087−5098.
[31] 李俊超, 郭胜利, 党廷辉, 等. 黄土丘陵区不同退耕方式土壤有机碳密度的差异及其空间变化[J]. 农业环境科学学报, 2014, 33(6):1167−1173. doi:  10.11654/jaes.2014.06.017.

Li J C, Guo S L, Dang T H, et al. Spatial variations in soil organic carbon density under different restoration practices in loess hilly-gully region[J]. Journal of Agro-Environment Science, 2014, 33(6): 1167−1173. doi:  10.11654/jaes.2014.06.017.
[32] Liu X, Ma J, Ma Z W, et al. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China[J]. Catena, 2017, 150: 146−153. doi:  10.1016/j.catena.2016.11.020.
[33] 王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22):6678−6691.

Wang J L, Zhong Z M, Wang Z H, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678−6691.