[1] ZHOU Q, YU G C, JIANG A A. Research progress in genetic basis of ocular albinism type Ⅰ [J]. Medical recapitulate, 2013,19(24): 4433-4435.
[2] SIMONET G, POELS J, CLAEYS I, et al. Neuroendocrinological and molecular aspects of insect reproduction [J]. Journal of Neuroendocrinology, 2004, 16(8): 649-659.
[3] CAO C W, SUN L L, WEN R R, et al. Cloning and analysis of LdOA 1 in Lymantria dispar and its response to the stress of three kinds of insecticides [J]. Scientia Silvae Sinicae, 2014, 50(8): 102-107.
[4] HAUSER F, CAZZAMALI G, WILLIAMSON M, et al. A review of neurohormone GPCRs present in the fruit fly Drosophila melanogaster and the honey bee Apis mellifera [J]. Progress in Neurobiology, 2006, 80(1): 1-19.
[5] WU W Q, LI H Y, ZHENG H. Molecular pathophysiological basis of the ocular albinism type 1 [J]. Chinese Journal of Pathophysiology, 2004, 20(2): 278-282.
[6] SPIT J, BADISCO L, VERLINDEN H, et al. Peptidergic control of food intake and digestion in insects [J]. Canadian Journal of Zoology, 2012, 90(4): 489-506.
[7] KOSTAROPOULOS I, PAPADOPOULOS A I, METAXAKIS A, et al. Glutathione S-transferase in the defence against pyrethroids in insects [J]. Insect Biochemistry Molecular Biology, 2001, 31(4-5):313-319.
[8] LOW W Y, FEIL S C, NG H L, et al. Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase Dl [J]. Journal of Molecular Biology, 2010, 399(3): 358-366.
[9] VONTAS J G, SMALL G J, HEMINGWAY J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilapartbta lugens [J]. Biochemical Journal, 2001, 357: 65-72.
[10] BERRUECO R, RIVES S, CAM��S M, et al. Syndromic albinism and haemophagocytosis [J]. British Journal of Haematology, 2010, 148(6) [2015-10-09]. doi: 10.1111/j.1365-2141.2009.07885.x.
[11] MARTINEZ-GARCIA M, RIVEIRO-ALVAREZ R, VILLAVERDE-MONTERO C, et al. Identification of a novel deletion in the OA1 gene: report of the first Spanish family with X-linked ocular albinism [J]. Clinical and Experimental Ophthalmology, 2010, 38(5):489-495.
[12] FALLETTA P, BAGNATO P, BONO M, et al. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression [J]. Pigment Cell & Melanoma Research, 2014, 27(4): 565-579.
[13] SCHIAFFINO M V. Signaling pathways in melanosome biogenesis and pathology [J]. International Journal of Biochemistry & Cell Biology, 2010, 42(7): 1094-1104.
[14] WITTKOPP P J, WILLIAMS B L, SELEGUE J E, et al. Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes [J]. Proceedings of the National Academy of Sciences of the USA,2003, 100(4): 1808-1813.
[15] 周琦, 余国春, 蒋岸岸. 眼白化病1型的遗传基础研究进展 [J]. 医学综述, 2013, 19(24): 4433-4435.
[16] 曹传旺, 孙丽丽, 问荣荣, 等. 舞毒蛾 LdOA 1基因克隆分析及对3种杀虫剂胁迫的响应 [J].林业科学, 2014, 50(8): 102-107.
[17] SUN L L, WANG Z Y , WU H Q, et al. Role of ocular albinism type 1 (OA1) GPCR in Asian gypsy moth development and transcriptional expression of heat-shock protein genes [J]. Pesticide Biochemistry and Physiology, 2016, 126:35-41.
[18] ZHU F, PARTHASARATHY R, BAI H, et al. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8557-8562.
[19] WILLIS D K, WANG J, LINDHOLM J R, et al. Microarray analysis of juvenile hormone response in Drosophila melanogaster S2 cells [J]. Journal of Insect Science, 2010,10 [2015-10-02]. doi: 10.1673/031.010.6601.
[20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔCT method [J]. Methods, 2001, 25(4): 402-408.
[21] HILL C A, FOX A N, PITTS R J, et al. G protein-coupled receptors in Anopheles gambiae [J]. Science, 2002, 298:176-178.
[22] LI T, CAO, C W, YANG T, et al. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus [J]. Scientific Reports, 2015, 5 [2015-10-01]. doi: 10.1038/srep17772.
[23] MEYER J M, EJENDAL K F K, AVRAMOVA L V, et al. A “genome-to-lead” approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors [J]. PLoS Neglected Tropical Diseases, 2012, 6(1) [2015-10-05]. doi: 10.1371/journal.pntd.0001478.
[24] HILL C A, MEYER J M, EJENDAL K F K, et al. Re-invigorating the insecticide discovery pipeline for vector control: GPCRs as targets for the identification of next gen insecticides [J]. Pesticide Biochemistry and Physiology, 2013, 106(3): 141-148.
[25] SHEN B, SAMARAWEERA P, ROSENBERG B, et al. Ocular albinism type 1: more than meets the eye [J]. Pigment Cell Research, 2001, 14(4): 243-248.
[26] LOPEZ V M, DECATUR C L, STAMER W D, et al. I-DOPA is an endogenous ligand for OA1 [J]. PLoS Biology, 2008, 6(9) [2015-10-10]. doi: 10.1371/journal.pbio.0060236.
[27] GHOSH A, SONAVANE U, ANDHIRKA S K, et al. Structural insights into human GPCR protein OA1: a computational perspective [J]. Journal of Molecular Modeling, 2012, 18(5): 2117-2133.
[28] 吴维青, 李洪义, 郑辉. 眼白化病1型的分子病理生理基础 [J].中国病理生理杂志, 2004, 20(2):278-282.
[29] ENAYATI A A, RANSON H, HEMINGWAY J. Insect glutathione transferases and insecticide resistance [J]. Insect Molecular Biology, 2005, 14(1): 3-8.
[30] OAKLEY A J, JIRAJAROERU'AT K , HAMNOI T, et al. Crystallization of two glutathione S-transferases from an unusual gene family [J]. Acta Crystallographica Section D: Biological Crystallography, 2001, 57(6): 870-872.
[31] CHEN L, HALL P R, ZHOU X E, et al. Structure of an insect δ-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae [J]. Acta Crystallographica Section D Biological Crystallography, 2003, 59(12): 2211-2217.
[32] UDOMSINPRASERT R, PONGJAROENKIT S, WONGSANTICHON J, et al. Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme [J]. Biochemistry Journal, 2005, 388(3): 763-771.
[33] WANG Y J, QIU L, RANSON H, et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity [J]. Journal of Structural Biology, 2008, 164(2): 228-235.