[1] CIESZEWSKI C J,BAILEY R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes [J]. Forest Science,2000,46:116-126.
[2] BRAVO F,MONTERO G. Site index estimation in Scotch pine (Pinus sylvestris L.) stands in the High Ebro Basin (Northern Spain) using soil attributes [J]. Forestry,2001,74:395-406.
[3] WAND G G. White spruce site index in relation to soil,understory vegetation,and foliar nutrients [J]. Canadian Journal of Forest Research,1994,25:29-38.
[4] CIESZEWSKI C J. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves [J]. Canadian Journal of Forest Research,2001,31: 165-173.
[5] CIESZEWSKI C J. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3=(Axm)/(C+Xm-1): a simplified mixed-model and scant subalpine fir data [J]. Forest Science,2003,49: 539-554.
[6] CARMEAN W H. Site index curves for upland oaks in the Central States [J]. Forest Science,1972,18: 109-120.
[7] CIESZEWSKI C J,STRUB M,ZASADA M J. New dynamic site equation that fits best the Schwap pach for Scots pine (Pinus sylvestris L.) in Central Europe [J]. Forest Ecology and Management,2007,23: 83-93.
[8] PALAHI M,TOME M,PUKKALA T,et al. Site index model for Pinus sylvestris in north-east Spain [J]. Forest Ecology and Management,2004,187: 35-47.
[9] FONWEBAN J N,TCHANOU Z,DEFO M. Site index equations for Pinus kesiya in Cameroon [J]. Journal of Tropical Forest Science,1995,8(1) : 24-32.
[10] DIEGUEZ-ARANDA U,GRANDAS-ARIAS J A,LVAREZ-GONZALEZ J G, et al. Site quality curves for birch (Betula pubescens Ehrh.) stands in north-western Spain [J]. Silva Fenn,2006,40: 631-644.
[11] BAILEY R L,CLUTTER J L. Base-age invariant polymorphic site curves [J]. Forest Science,1974,20: 155-159.
[12] CURTIS R O,DEMARS D J,HERMAN F R. Which dependent variables in site index-height-age regressions [J]. Forest Science, 1974,20:74-87.
[13] MONSERUD R A. Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type [J]. Forest Science,1984,30: 943-965.
[14] ERCANLI I,KSHRIMAN A,YAVUZ H. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) stands [J]. Turkish Journal of Agriculture and Forestry,2014,38: 134-147.
[15] SHARMA R P,BRUNNER A,EID T,et al. Modelling dominant height growth from national forest inventory individual tree data with short time series and large age errors[J]. Forest Ecology and Management,2011,262:2162-2175.
[16] TEWARI V P,LVAREZ-GONZALEZ J G, GADOW K V. Dynamic base-age invariant site index models for Tectona grandis in peninsular India[J]. Southern Forests: a Journal of Forest Science,2014,76:1, 21-27.
[17] NIGH G. Site index conversion equations for mixed trembling aspen and white spruce stands in northern British Columbia [J]. Silva Fennica, 2002,36(4): 789-797.
[18] BRAVO-OVIEDO A,MONTERO G. Geographic variation and parameter assessment in generalized algebraic difference site index modelling [J]. Forest Ecology and Management,2007,247:107-119.
[19] DOOLITTLE W T. Site index comparisons for several forest species in the Southern Appalachians Proc [J]. Soil Science Society of America Journal, 1958, 22(5):455-458
[20] CORRAL-RIVAS J J,ALVAREZ-GONZLEZ J G,RUIZ- GONZLEZ A D,et al. Compatible height and site index models for five pine species in El Salto,Durango (Mexico) [J]. Forest Ecology and Management,2004,201: 145-160.
[21] NIGH G,KAYAHARA G. Site index conversion equations for Western Redcedar and Western Hemlock [J]. Northwest Science, 2000,74:146-150.
[22] TIWARI V P,SINGH B. Site index model for Tecomella undulata (Sm.) Seem.(Bignoniaceae) plantations in a hot arid region of India [J]. Journal of Arid Environments,2009,43:490-493.
[23] DIEGUEZ-ARANDA U,BURKHART H E,RODRIGUEZ-SOALLEIRO R. Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain [J]. Forest Ecology and Management,2005,215: 271-284.
[24] VANCLAY J K. Assessing site productivity in tropical moist forests: a review [J]. Forest Ecology and Management,1992,54: 257-287.
[25] KAHRIMAN A, YAVUZ H,ERCANLI I. Site index conversion equations for mixed stands of Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) in the Black Sea Region,Turkey[J]. Turkish Journal of Agriculture and Forestry,2013,37: 488-494.
[26] FRIES A,LINDGREN D,YING C C,et al. The effect of temperature on site index in western Canada and Scandinavia estimated form IUFRO Pinus contorta provenance experiments [J]. Canadian Journal of Forest Research,2000,30: 921-929.
[27] SEYNAVE I,GEGOUT J C,HERVE J C,et al. Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases [J]. Canadian Journal of Forest Research,2005,35: 1669-1678.
[28] BRAVO-OVIEDO A,ROIG S,BRAVO F,et al. Environmental variability and its relationship to site index in Mediterranean maritine pine [J]. Forest Systems,2011,20(1): 50-64.
[29] BARRIO G,HARRISON P A,BERRY P M,et al. Integrating multiple modeling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy[J]. Environmental Science Policy,2006,9: 129-147.
[30] DELGADOCABALLERO C E,GMEZGUERRERO A,VALDEZLAZALDE J R,et al. Site index and soil properties in young plantations of Eucalyptus grandis and E.urophylla in southeastern MXICO[J]. Agrociencia,2009,43: 61-72.