[1] ZHENG W J. Records of Chinese trees[M]. Beijing:China Forestry Publishing House, 1998.
[2] 郑万钧.中国树木志[M]. 北京:中国林业出版社, 1998.
[3] CHEN X,WANG G X,LIANG L S, et al. Cloning and temporal-spatial expression of a CBF homolog associated with cold acclimation from Corylus heterophylla[J]. Scientia Silvae Sinicae,2012,48(1):167-172.
[4] 陈新,王贵禧,梁丽松,等.平榛冷适应相关基因CBF的克隆及时空表达特性分析[J]. 林业科学,2012, 48(1):167-172.
[5] 李凤光,娄汉平,高丹,等.平欧杂交榛引种初报[J]. 北方园艺,2009, 33(4):91-92.
[6] LI F G, LOU H P, GAO D, et al. Preliminary study on introducing of hybrid hazel[J]. Northern Horticulture, 2009, 33(4):91-92.
[7] 李春牛,董凤祥,王贵禧,等.平欧杂交榛抗抽条能力及抽条临界含水量研究[J]. 林业科学研究,2010,23(3):330-335.
[8] LI C N,DONG F X,WANG G X, et al. Study on the tolerance and critical water capacity of shoot shriveling in hybrid hazelnuts[J]. Forest Research,2010,23(3):330-335.
[9] 赵爽,苏淑钗,张兵,等.河北省平泉县平欧杂交榛越冬性研究[J]. 中南林业科技大学学报,2015,35(4):33-39.
[10] ZHAO S,SU S C,ZHANG B, et al. Study on over-wintering survival rate of Corylus heterophylla × C.avellana in Pingquan, Hebei Province[J]. Journal of Central South University of Forestry Technology, 2015,35(4):33-39.
[11] 陈新,王贵禧,徐丽,等.榛子甜菜碱醛脱氢酶基因BADH的克隆及在越冬过程中的表达特性分析[J]. 山东农业科学,2013,45(5):6-12.
[12] CHEN X,WANG G X,XU L,et al. Cloning and expression analysis of betaine aldehyde dehydrogenase BADH gene from hzaelnut(Corylus heterophylla Fisch.) during overwintering period[J]. Shandong Agricultural Sciences,2013,45(5):6-12.
[13] QIN F,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant Cell Physiology,2011,52(9):1569-1582.
[14] SONG C N,QIAN J L,FANG J G,et al. Cloning, subcellular localization and expression analysis of SPL9 and SPL13 genes from Poncirus trifoliata[J]. Scientia Agricultura Sinica,2010,43(10):2105-2114.
[15] ZHAO S J,SHI G A,DONG X C. Techniques of plant physiological experiment[M]. Beijing:Agricultural Scientific and Technical Press of China, 2002.
[16] STOCKINGER E J,GILMOUR S J,THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceeding of the National Academy of Sciences of the United States of America,1997,94(3):1035-1040.
[17] PAN X W,LI Y C,LI X X. Differential regulatory mechanism of CBF regulon between Nipponbare(japonica) and 93-11(Indica) during cold acclimation[J]. Chinese Journal of Rice Science,2012,26(5):521-528.
[18] LIU Q,KASUGA M,SAKUMA Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell,1998,10(8):1391-1406.
[19] WEI J Y,ZHAO J,ZHAO S Q. Activation and regulation on the cold response pathway of ICE1-CBF in plants[J]. Biotechnology Bulletin,2015,31(6):8-12.
[20] SAKUMA Y,LIU Q,DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical Biophysical Research Communications,2002, 290(3):998-1009.
[21] DUBOUZET J G,SAKUMA Y,ITO Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. The Plant Journal,2003,33(4):751-763.
[22] QIN F,SAKUMA Y,LI J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.[J]. Plant Cell Physiology, 2004,45(8):1042-1052.
[23] YANG W,LIU X D,CHI X J,et al. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta,2011,233(2):219-229.
[24] KITASHIBA H,ISHIZAKA T,ISUZUGAWA K, et al. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance[J]. Journal of Plant Physiology,2004,161(10):1171-1176.
[25] NAVARRO M,AYAX C,MARTINEZ Y, et al. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development[J]. Plant Biotechnology Journal, 2011,9(1):50-63.
[26] WELLING A,PALVA E T. Involvement of CBF transcription factors in winter hardiness in birch[J]. Plant Physiology, 2008,147(3):1199-1211.
[27] WANG Z L,LIU J,GUO H Y, et al. Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis[J]. Plant Physiology and Biochemistry,2014,83:107-116.
[28] BENEDICT C,SKINNER J S,MENG R, et al. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.[J]. Plant, Cell Environment, 2006,29(7):1259-1272.
[29] CHENG H,CAI H B,FU H T, et al. Functional characterization of Hevea brasiliensis CRT/DRE binding factor1 gene revealed regulation potential in the CBF pathway of tropical perennial tree[J/OL]. PLoS One,2015,10(9):e0137634. [2015-12-12]. http:∥dx.doi.org/ 10.1371/journal.pone.0137634. DOI: 10.1371/journal.pone.0137634.
[30] MORRAN S,EINI O,PYVOVARENKO T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal,2011,9(2):230-249.
[31] CHANG S,PURYEAR J,CAIRNEY J. A simple and efficient method for isolating RNA from pine trees[J]. Plant Molecular Biology Reporter,1993,11(2):113-116.
[32] 宋长年,钱剑林,房经贵,等. 枳SPL9和SPL13全长cDNA克隆、亚细胞定位和表达分析[J]. 中国农业科学,2010,43(10):2105-2114.
[33] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001, 25(4):402-408.
[34] CLOUGH S J,BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,1998,16(6):735-743.
[35] BATES L S,WALDREN R P,TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.
[36] 赵世杰,史国安,董新纯.植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2002.
[37] JAGLO K R,KLEFF S,AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,2001,127(3):910-917.
[38] XIONG Y W,FEI S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass(Lolium perenne L.)[J]. Planta,2006,224(4):878-888.
[39] LI D F,ZHANG Y Q,HU X N,et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses[J]. BMC Plant Biology,2011,11:109.
[40] CONG L,CHAI T Y,ZHANG Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L.[J]. Biochemistry Biophysical Research Communications,2008,371(4):702-706.
[41] TONG Z,HONG B,YANG Y J, et al. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis[J]. Plant Molecular Biology,2009,71(1):115-129.
[42] OAKENFULL R J,BAXTER R,KINGHT M R. A C-repeat binding factor transcriptional activator(CBF/DREB1) from European bilberry(Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana[J/OL]. PLoS One, 2013,8(1):e54119. [2015-12-13]. http:∥dx.doi.org/ 10.1371/journal.pone.0054119. DOI: 10.1371/journal.pone.0054119.
[43] VOGEL J T,ZARKA D G,VAN BUSKIRK H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. The Plant Journal,2005,41(2):195-211.
[44] ISHITANI M,MAJUMDER A L,BORNHOUSER A ,et al. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress[J]. The Plant Journal,1996,9(4):537-548.
[45] WANNER L A,JUNTTILA O. Cold-induced freezing tolerance in Arabidopsis[J]. Plant Physiology,1999,120(2):391-399.
[46] TAJI T,OHSUMI C,IUCHI S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal,2002,29(4):417-426.
[47] NOMURA M,MURAMOTO Y,YASUDA S, et al. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley[J]. Euphytica,1995,83(3):247-250.
[48] ITO Y,KATSURA K,MARUYAMA K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiology,2006,47(1):141-153.
[49] 潘孝武,黎用朝,李小湘.CBF调节子在水稻品种日本晴和93-11低温驯化过程中的差异调控机制[J]. 中国水稻科学,2012,26(5):521-528.
[50] ZHANG X,FOWLER S G,CHENG H, et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal,2004,39(6):905-919.
[51] 魏俊燕,赵佳,赵仕琪. 植物ICE1-CBF冷反应通路的激活与调控研究进展[J]. 生物技术通报, 2015,31(6):8-12.