[1] STUIBLE H, BUTTNER D, EHLTING J, et al. Mutational analysis of 4-coumarate:CoA ligase identifies functionally important amino acids and verifies its close relationship to other adenylate-forming enzymes [J]. FEBS Letters, 2000, 67(1):117-122.
[2] SCHMELZ S, NAISMITH J H. Adenylate-forming enzymes [J]. Current Opinion in Structural Biology, 2009, 19(6): 666-671.
[3] BABBITT P C, KENYON G L, MARTIN B M, et al. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases [J]. Biochemistry, 1992, 31(24): 5594-5604.
[4] SHOCKEY J M, FULDA M S, BROWSE J. Arabidopsis contains a large superfamily of acyl-activating enzymes:phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme a synthetases [J]. Plant Physiology, 2003, 132(2):1065-1076.
[5] EHLTING J, BTTNER D, WANG Q, et al. Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J]. The Plant Journal, 1999, 19(1):9-20.
[6] SHOCKEY J M, FULDA M S, BROWSE J A. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism [J]. Plant Physiology, 2002, 129(4):1710-1722.
[7] KE J, BEHAL R H, BACK S L, et al. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds [J]. Plant Physiology, 2000, 123(2):497-508.
[8] HAMBERGER B, HAHLBROCK K. The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes [J]. Proceedings of the National Academy of Sciences USA, 2004, 101(7):2209-2214.
[9] SCHNURR J A, SHOCKEY J M, DE BOER G J, et al. Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis [J]. Plant Physiology, 2002, 129(4):1700-1709.
[10] SCHNURR J, SHOCKEY J, BROWSE J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis [J]. Plant Cell, 2004, 16(3):629-642.
[11] FULDA M, SCHNURR J, ABBADI A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana [J]. Plant Cell, 2004, 16(2):394-405.
[12] 饶国栋, 陆海. 毛白杨4CL基因家族的克隆与进化分析 [J].广东农业科学, 2012(8): 141-144.
[13] RAO G D, LU H. Cloning and phylogenetic analysis of 4CL gene family from Populus tomentosa Carr [J]. Guangdong Agricultural Sciences, 2012(8): 141-144.
[14] LINDNER I, RUBIN D, HELWIG U, et al. The L513S polymorphism in medium-chain acyl-CoA synthetase 2 (MACS2) is associated with risk factors of the metabolic syndrome in a Caucasian study population [J]. Molecular Nutrition Food Research, 2006, 50:270-274.
[15] KASUYA F, KAZUMI M, TATSUKI T, et al. Effect of salicylic acid and diclofenac on the medium-chain and long-chain acyl-CoA formation in the liver and brain of mouse [J]. Applied Toxicology, 2009, 29(5):435-445.
[16] YU M, INGRAM-SMITH C, COOPER L L, et al. Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans [J]. Journal of Bacteriology, 2010, 192(22):5982-5990.
[17] ALLINA S M, PRI-HADASH A, THEILMANN D A, et al. 4-coumarate:coenzyme A ligase in hybrid poplar. Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes [J]. Plant Physiology, 1998, 116(2):743-754.
[18] FERNNDEZ-VALVERDE M, REGLERO A, MARTINEZ-BLANCO H, et al. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates [J]. Applied and Environmental Microbiology, 1993,59(4):1149-1154.
[19] SCHNEIDER K, KIENOW L, SCHMELZER E, et al. A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid [J]. The Journal of Biological Chemistry, 2005, 80(14), 13962-13972.
[20] EHLTING J, MATTHEUS N, AESCHLIMAN D S, et al. Global transcript profiling of primary stems from Arabidopsis thaliana indentifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation [J]. The Plant Journal, 2005, 42(5):618-640.
[21] COSTA M A, BEDGAR D L, MOINUDDIN S G, et al. Characterization in vitro and in vivo of the putative multigene 4-coumarate: CoA ligase network in Arabidopsis; syringyl lignin and sinapate/sinapyl alcohol derivative formation [J]. Phytochemistry, 2005, 66(17): 2072-2091.
[22] STEINBERG S J, MORGENTHALER J, HEINZER A K, et al. Very long-chain acyl-CoA synthetases: human bubblegum represents a new family of proteins capable of activating very long-chain fatty acids [J]. Biological Chemistry, 2000, 275(45):35162-35169.
[23] FULDA M, SHOCKEY J, WERBER M, et al. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid -oxidation [J]. The Plant Journal, 2002, 32(1): 93-103.
[24] ZHAO L, KATAVIC V, LI F, et al. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1(LACS1), but Not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis [J]. The Plant Journal, 2010, 64:1048-1058.
[25] SCHNURR J, HOCKEY J, BROWSE J. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis [J]. Plant Cell, 2004,16(3):629-642.
[26] LU S, SONG T, KOSMA D K, et al. Arabidopsis CER8 encodes long-chain acyl-coA synthetase1(LACS1)that has overlapping functions with LACS2 in plant wax and cutin synthesis [J]. The Plant Journal, 2009, 59(4):553-564.
[27] JESSEN D, ROTH C, WIERMER M, et al. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis [J].Plant Physiology, 2015, 167: 351-366.