[1] CALAMA R, MONTERO G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain [J]. Canadian Journal of Forest Research, 2004, 34(1): 150-163.
[2] LEI X D, PENG C H, WANG H Y, et al. Individual height-diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada [J]. The Forestry Chronicle, 2009, 85(1): 43-56.
[3] LASERN D R, HANN D W. Height-diameter equations for seventeen tree species in Southwest Oregon [C].Corvallis: Oregon State University,1987.
[4] JAYARAMAN K, LAPPI J. Estimation of height-diameter curves through multilevel models with special reference to even-aged teak stands [J]. Forest Ecology and Management, 2001, 142: 155-162.
[5] COLBERT K, LARSEN D, LOOTENS J. Height-diameter equations for thirteen midwestern bottomland hardwood species [J]. Northern Journal of Applied Forestry, 2002, 19(4): 171-176.
[6] HUANG S, TITUS S J. An index of site productivity for uneven-aged or mixed-species stands [J]. Canadian Journal of Forest Research, 1993, 23(3): 558-562.
[7] VANCLAY J K. Modelling forest growth and yield: applications to mixed tropical forests [M]. Wallingford: CAB International, 1994.
[8] CURTIS R O. Height-diameter and height-diameter-age equations for second-growth Douglas-Fir [J]. Forest Science, 1967, 13: 365-375.
[9] PENG C, ZHANG L, LIU J. Developing and validating nonlinear height-diameter models for major tree species of Ontarios boreal forests [J]. Northern Journal of Applied Forestry, 2001, 18(3): 87-94.
[10] FORD E D, DIGGLE P J. Competition for light in a plant monoculture modelled as a spatial stochastic process [J]. Annals of Botany, 1981, 48: 481-500.
[11] TOMPPO E. Models and methods for analysing spatial patterns of trees [M]. Helsinki: The Finnish Forest Research Institute, 1986.
[12] MATEU J, USO J, MONTES F. The spatial pattern of a forest ecosystem [J]. Ecological Modelling, 1998, 108(1): 163-174.
[13] MAGNUSSEN S. Application and comparison of spatial models in analyzing tree-genetics field trials [J]. Canadian Journal of Forest Research, 1990, 20: 536-546.
[14] FOX J C, ADES P K, BI H. Stochastic structure and individual-tree growth models [J]. Forest Ecology and Management, 2001, 154(1): 261-276.
[15] MENG Q, CIESZEWSKI C J, STRUB M R, et al. Spatial regression modeling of tree height-diameter relationships [J]. Canadian Journal of Forest Research, 2009, 39(12): 2283-2293.
[16] ANSELIN L. Spatial econometrics: methods and models [M]. Dordrecht: Kluwer Academic Publishers, 1988.
[17] LEGENDRE P. Spatial autocorrelation trouble or new paradigm? [J]. Ecology, 1993, 74: 1659-1673.
[18] LEGENDRE P, LEGENDRE L. Numerical ecology [M]. Amsterdam: Elsevier, 1998.
[19] MILLER H J. Toblers First Law and Spatial Analysis [J]. Annals of The Association of American Geographers, 2004, 94(2): 284-289.
[20] LENNON J J. Red-shifts and red herrings in geographical ecology [J]. Ecography, 2000, 23(1): 101-113.
[21] LEGENDRE P, DALE M R T, FORTIN M J, et al.The consequences of spatial structure for the design and analysis of ecological field surveys [J]. Ecography, 2002, 25(5): 601-615.
[22] DORMANN C F, MCPHERSON J M, ARAUJO M B, et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review [J]. Ecography, 2007, 30(5): 609-628.
[23] KISSLING W D, CARL G. Spatial autocorrelation and the selection of simultaneous autoregressive models [J]. Global Ecology and Biogeography, 2008, 17: 59-71.
[24] KRMER W. Finite sample efficiency of ordinary least squares in linear regression model with autocorrelated errors [J]. Journal of the American Statistical Association, 1980, 75: 1005-1099.
[25] WEST P W, RATKOWSKY D A, DAVIS A W. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units [J]. Forest Ecology and Management, 1984, 7(3): 207-224.
[26] GREGOIRE T G. Generalized error structure for forestry yield models [J]. Forest Science, 1987, 33(2): 423-444.
[27] ZHANG L, SHI H J. Local modeling of tree growth by geographically weighted regression [J]. Forest Science, 2004, 50: 225-244.
[28] ZHANG L, BI H, CHENG P, et al. Modeling spatial variation in tree diameter-height relationships [J]. Forest Ecology and Management, 2004, 189(1-3): 317-329.
[29] ZHANG L, GOVE J H, HEATH L S. Spatial residual analysis of six modeling techniques [J]. Ecological Modelling, 2005, 186(2): 154-177.
[30] LU J F, ZHANG L J. Modeling and prediction of tree height-diameter relationship using spatial autoregressive models [J]. Forest Science, 2011, 57(3): 252-264.
[31] CRESSIE N A C. Statistics for spatial data [M].Wiley Series in Probability and Mathematical Statistics. New York: Wiley, 1993.
[32] HAINING R. Spatial data analysis: theory and practice [M]. Cambridge: Cambridge University Press, 2003.
[33] 李金良, 郑小贤, 王昕. 东北过伐林区林业局级森林生物多样性指标体系研究[J]. 北京林业大学学报, 2003, 25(1): 48-52.
[34] LI J L, ZHENG X X, WANG X. Study on forest biodiversity index system of northeast over cutting forest region based on forestry bureau level [J]. Journal of Beijing Forestry University, 2003, 25(1): 48-52.
[35] 杨华, 李艳丽, 沈林, 等. 长白山云冷杉针阔混交林主要树种空间分布及其关联性 [J]. 生态学报, 2014, 34(16): 4698-4706.
[36] YANG H, LI Y L, SHEN L, et al. Spatial distributions and associations of main tree species in a spruce-fir forest in the Changbai Mountains area in northeastern China [J]. Acta Ecologica Sinica, 2014, 34(16): 4698-4706.
[37] 李冰, 樊金拴, 车小强. 我国天然云冷杉针阔混交林结构特征、更新特点及经营管理 [J]. 世界林业研究, 2012, 25(3): 43-49.
[38] LI B, FAN J S, CHE X Q. A review of studies on structural features, regeneration features and management of natural spruce-fir mixed stand of coniferous and broadleaved trees in China [J]. World Forestry Research, 2012, 25(3): 43-49.
[39] 李艳丽, 杨华, 亢新刚, 等. 长白山云冷杉针阔混交林天然更新空间分布格局及其异质性 [J]. 应用生态学报, 2014, 25(2): 311-317.
[40] LI Y L, YANG H, KANG X G, et al. Spatial heterogeneity of natural regeneration in a spruce-fir mixed broadleaf-conifer forest in Changbai Mountains [J]. Chinese Journal of Applied Ecology, 2014, 25(2): 311-317.
[41] HUANG S, TITUS S, WIENS D P. Comparison of nonlinear height-diameter functions for major Alberta tree species [J]. Canadian Journal of Forest Research, 1992, 22: 1297-1304.
[42] 李希菲, 唐守正, 袁国仁, 等. 自动调控树高曲线和一元立木材积模型 [J]. 林业科学研究, 1994, 7(5): 512-518.
[43] LI X F, TANG S Z, YUAN G R, et al. Self-adjusted height-diameter curves and one entry volume model [J]. Forest Research, 1994, 7(5): 512-518.
[44] CLIFF A D, ORD J K. Spatial processes-models and applications [M].Economic Geography. London: Pion Ltd, 1981.
[45] FORTIN M J, DALE M R T. Spatial analysis: a guide for ecologists [M]. Cambridge: Cambridge University Press, 2005.
[46] GETIS A, ALDSTADT J. Constructing the spatial weights matrix using a local statistic [J]. Geographical Analysis, 2004, 36(2): 90-104.
[47] SMIRNOV O, ANSELIN L. Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach [J]. Computational Statistics and Data Analysis, 2001, 35(3): 301-319.
[48] LESAGE J P. Spatial econometrics [M/OL]. [2015-07-03]. https://www.researchgate.net/publication/277298256_Spatial_Econometrics.
[49] ARABATZIS A A, BURKHART H E. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations [J]. Forest Science, 1992, 38(1): 192-198.
[50] ZHANG L J. Cross-validation of nonlinear growth functions for modeling tree height-diameter distributions [J]. Annals of Botany, 1997, 79(3): 251-257.