[1] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226. doi:  10.1007/s10533-004-0370-0
[2] HOWARTH R W, SCHLESINGER W H, VITOUSEK P M, et al. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 2008, 7: 737-750. https://www.sciencedirect.com/science/article/pii/S1240130797877382
[3] HÖGBERG P. Environmental science: nitrogen impacts on forest carbon[J]. Nature, 2007, 447: 781-782. doi:  10.1038/447781a
[4] LIU X, LEI D, MO J, et al. Nitrogen deposition and its ecological impact in China: an overview[J]. Environmental Pollution, 2011, 159(10): 2251-2264. doi:  10.1016/j.envpol.2010.08.002
[5] THOMAS R Q, CANHAM C D, WEATHERS K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US[J]. Preventive Veterinary Medicine, 2010, 3(1): 229-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e245d86d029e5e35adaeee502a8e86dd
[6] SILLEN W M A, DIELEMAN W I J. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis[J]. Biogeosciences Discussions, 2012, 9(6): 2247-2258. doi:  10.5194/bg-9-2247-2012
[7] LOVETT G M, GOODALE C L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest[J]. Ecosystems, 2011, 14(4): 615-631. doi:  10.1007/s10021-011-9432-z
[8] ABER J D, MAGILL A, MCNULTY S G, et al. Forest biogeochemistry and primary production altered by nitrogen saturation[J]. Water, Air & Soil Pollution, 1995, 85(3): 1665-1670. doi:  10.1007-BF00477219/
[9] YANO Y, MCDOWELL W H, ABER J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology & Biochemistry, 2000, 32: 1743-1751. https://harvardforest.fas.harvard.edu/sites/harvardforest.fas.harvard.edu/files/publications/pdfs/Yano_SoilBiol&Biochem_2000.pdf
[10] MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3: 238-253. doi:  10.1007/s100210000023
[11] LOVETT G M, ARTHUR M A, WEATHERS K C, et al. Nitrogen addition increases carbon storage in soils, but not in trees, in an Eastern U.S. deciduous forest[J]. Ecosystems, 2013, 16(6): 980-1001. doi:  10.1007/s10021-013-9662-3
[12] LIU L, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment[J]. Ecology Letters, 2010, 13(7): 819-828. doi:  10.1111/j.1461-0248.2010.01482.x
[13] LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2): 234-244. http://cn.bing.com/academic/profile?id=5a3be51bd10f1eff505b5ce650e9231b&encoded=0&v=paper_preview&mkt=zh-cn
[14] LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems[J]. Scientific Reports, 2015, 5: 7952. doi:  10.1038/srep07952
[15] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. doi:  10.1038/ngeo844
[16] FOSTER N W, HAZLETT P W, NICOLSON J A, et al. Ion leaching from a sugar maple forest in response to acidic deposition and nitrification[J]. Water, Air & Soil Pollution, 1989, 48(48): 251-261. http://cn.bing.com/academic/profile?id=e161eb4165dda375fdfb5082c4994820&encoded=0&v=paper_preview&mkt=zh-cn
[17] 肖辉林, 卓慕宁, 万洪富.大气N沉降的不断增加对森林生态系统的影响[J].应用生态学报, 1996, 7(增刊1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm

XIAO H L, ZHUO M N, WAN H F. Effect of increased deposition of atmospheric nitrogen on forest ecosystem[J]. Chinese Journal of Applied Ecology, 1996, 7(Suppl.1): 110-116. http://www.cnki.com.cn/Article/CJFDTotal-YYSB6S1.021.htm
[18] 陈传国, 朱俊凤.东北主要林木生物量手册[M].北京:中国林业出版社, 1989.

CHEN C G, ZHU J F. A handbook for main tree species biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
[19] WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d480b7b7505f7c5bcdc3b33c43141c0f
[20] 董利虎, 李凤日, 贾炜玮, 等.含度量误差的黑龙江省主要树种生物量相容性模型[J].应用生态学报, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024

DONG L H, LI F R, JIA W W, et al. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 2 (10): 2653-2661. http://d.old.wanfangdata.com.cn/Periodical/yystxb201110024
[21] 刘妍妍, 金光泽.地形对小兴安岭阔叶红松(Pinus koraiensis)林粗木质残体分布的影响[J].生态学报, 2009, 29(3): 1398-1407. doi:  10.3321/j.issn:1000-0933.2009.03.037

LIU Y Y, JIN G Z. Influence of topography on coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains, China[J]. Acta Ecologica Sinica, 2009, 29(3): 1398-1407. doi:  10.3321/j.issn:1000-0933.2009.03.037
[22] 中华人民共和国农林部. LY 208-77树木材积表[S].北京: 中国标准出版社, 1978.

Ministry of Agriculture and Forestry of the People's Republic of China. LY 208-77 tree volume table[S]. Beijing: China Standards Press, 1978.
[23] CLARK D A, BROWN S, KICKLIGHTER D W, et al. Measuring net primary production in forests: concepts and field methods[J]. International Journal of Heat & Mass Transfer, 2008, 46(22): 4235-4244. https://academic.oup.com/treephys
[24] XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179(2): 428-439. doi:  10.1111/j.1469-8137.2008.02488.x
[25] RUSSELL A E, LAIRD D A, PARKIN T B, et al. Impact of nitrogen fertilization and cropping system on carbon sequestration in midwestern Mollisols[J]. Soil Science Society of America Journal, 2005, 69(2): 413-422. doi:  10.2136/sssaj2005.0413
[26] TRESEDER K K, HOLDEN S R. Fungal carbon sequestration[J]. Science, 2013, 339: 1528-1529. doi:  10.1126/science.1236338
[27] 毛宏蕊, 陈金玲, 金光泽.氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J].北京林业大学学报, 2016, 38(3): 21-31. doi:  10.13332/j.1000-1522.20150139

MAO H R, CHEN J L, JIN G Z. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. doi:  10.13332/j.1000-1522.20150139
[28] 唐凤德, 韩士杰, 张军辉.长白山阔叶红松林生态系统碳动态及其对气候变化的响应[J].应用生态学报, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004

TANG F D, HAN S J, ZHANG J H. Carbon dynamics of broad-leaved Korean pine forest ecosystem in Changbai Mountains and its responses to climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(6): 1285-1292. http://d.old.wanfangdata.com.cn/Periodical/yystxb200906004
[29] D'ORANGEVILLE L, HOULE D, CÔTÉ B, et al. Increased soil temperature and atmospheric N deposition have no effect on the N status and growth of a mature balsam fir forest[J]. Biogeosciences, 2013, 10: 4627-4639. doi:  10.5194/bg-10-4627-2013
[30] LLOYD J, TAYLOR J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8(3): 315-323. doi:  10.2307-2389824/
[31] NADELHOFFER K J, EMMETT B A, GUNDERSEN P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-148. doi:  10.1038/18205
[32] FLEISCHER K, REBEL K T, MOLEN M K V D, et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests[J]. Global Biogeochemical Cycles, 2013, 27(1): 187-199. doi:  10.1002/gbc.20026
[33] TATARINOV F A, CIENCIALA E. Application of BIOME-BGC model to managed forests (1): sensitivity analysis[J]. Forest Ecology and Management, 2007, 237(1): 267-279. http://cn.bing.com/academic/profile?id=a11b3455a2eab745fa9d12ba4b7af737&encoded=0&v=paper_preview&mkt=zh-cn
[34] KRAUSE K, CHERUBINI P, BUGMANN H, et al. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes[J]. Tree Physiology, 2012, 32(12): 1471-1481. doi:  10.1093/treephys/tps109
[35] VOGT K A, GRIER C C, MEIER C E, et al. Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington[J]. Ecology, 1982, 63(2): 370-380. doi:  10.2307/1938955
[36] ZHAO M, XIANG W, TIAN D, et al. Effects of increased nitrogen deposition and rotation length on long-term productivity of Cunninghamia lanceolata plantation in southern China[J/OL]. PLoS ONE, 2013, 8(2): e55376[2016-09-21]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055376.
[37] YE X, WANG A, CHEN J. Distribution and deposition characteristics of carbon and nitrogen in sediments in a semi-closed bay area, southeast China[J]. Continental Shelf Research, 2014, 90: 133-141. doi:  10.1016/j.csr.2014.07.015
[38] LU X, GILLIAM F S, YU G, et al. Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems[J]. Biogeosciences Discussions, 2013, 10(1): 1451-1481. doi:  10.5194/bgd-10-1451-2013
[39] EDWARDS P J. Studies of mineral cycling in a montane rain forest in New Guinea (Ⅱ): the production and disappearance of litter[J]. Journal of Ecology, 1977, 65(3): 971-992. doi:  10.2307/2259388
[40] FRANGI J L, LUGO A E. Ecosystem dynamics of a subtropical floodplain forest[J]. Ecological Monographs, 1985, 55(3): 351-369. doi:  10.2307/1942582
[41] EISSENSTAT D M, YANAI R D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1-60. doi:  10.1016/S0065-2504(08)60005-7
[42] GUNDERSEN P, EMMETT B A, KJONAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. Forest Ecology and Management, 1998, 101(1): 37-55 doi:  10.1016-S0378-1127(97)00124-2/
[43] KJØNAAS O J, STUANES A O, HUSE M. Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden[J]. Forest Ecology and Management, 1998, 101: 227-249. doi:  10.1016/S0378-1127(97)00140-0