[1] MATTHEWS E. Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia[J]. Global Biogeochemical Cycles, 1994, 8(4):411-439. doi:  10.1029/94GB01906
[2] LOVETT G M, GOODALE C L. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest[J]. Ecosystems, 2011, 14(4):615-631. doi:  10.1007/s10021-011-9432-z
[3] XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J].New Phytologist, 2008, 179(2): 428-439. doi:  10.1111/j.1469-8137.2008.02488.x
[4] CROWLEY K F, MCNEIL B E, LOVETT G M, et al. Do nutrient limitation patterns shift from nitrogen toward phosphorus with increasing nitrogen deposition across the northeastern United States?[J]. Ecosystems, 2012, 15(6):940-957. doi:  10.1007/s10021-012-9550-2
[5] ZHAO J, WANG F, LI J, et al. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest[J]. Soil Biology and Biochemistry, 2014, 75:1-10. doi:  10.1016/j.soilbio.2014.03.019
[6] TEMPLER P H, WEATHERS K C, LINDSEY A, et al. Atmospheric inputs and nitrogen saturation status in and adjacent to Class Ⅰ wilderness areas of the northeastern US[J]. Oecologia, 2015, 177(1):5-15. doi:  10.1007/s00442-014-3121-5
[7] ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems[J]. BioScience, 1998, 48 (11):921-934. doi:  10.2307/1313296
[8] TATE R L. Nitrogen in terrestrial ecosystems questions of productivity, vegetational changes, and ecosystem stability[J]. Soil Science, 1992, 154(6):508. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/095968369200200215
[9] MAGILL A H, ABER J D, BERNTSON G M, et al. Long-term nitrogen additions and nitrogen saturation in two temperate forests[J]. Ecosystems, 2000, 3(3):238-253. doi:  10.1007/s100210000023
[10] MAGILL A H, ABER J D, HENDRICKS J J, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition[J]. Ecological Applications, 1997, 7(2):402-415. doi:  10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2
[11] 方运霆, 莫江明, 周国逸, 等.鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应[J].热带亚热带植物学报, 2005, 13(3):198-204. doi:  10.3969/j.issn.1005-3395.2005.03.002

FANG Y T, MO J M, ZHOU G Y, et al. Response of diameter at breast height increment to N additions in forests of Dinghushan Biosphere Reserve[J]. Journal of Tropical and Subtropical Botany, 2005, 13(3):198-204. doi:  10.3969/j.issn.1005-3395.2005.03.002
[12] NIU S, WU M, HAN Y I, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe[J].Global Change Biology, 2010, 16(1):144-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2009.01894.x
[13] 张蕊, 王艺, 金国庆, 等.施氮对木荷3个种源幼苗根系发育和氮磷效率的影响[J].生态学报, 2013, 33(12):3611-3621. http://d.old.wanfangdata.com.cn/Periodical/stxb201312006

ZHANG R, WANG Y, JIN G Q, et al. Nitrogen addition affects root growth, phosphorus and nitrogen efficiency of three provenances of Schima superba in barren soil[J]. Acta Ecological Sinica, 2013, 33(12):3611-3621. http://d.old.wanfangdata.com.cn/Periodical/stxb201312006
[14] THOMAS R Q, ZAEHLE S, TEMPLER P H, et al. Global patterns of nitrogen limitation: confronting two global biogeochemical models with observations[J]. Global Change Biology, 2013, 19(10):2986-2998. doi:  10.1111/gcb.12281
[15] THOMAS R Q, BROOKSHIRE E N, GERBER S. Nitrogen limitation on land: how can it occur in earth system models?[J]. Global Change Biology, 2015, 21(5):1777-1793. doi:  10.1111/gcb.12813
[16] NIU S, CLASSEN A T, DUKES J S, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle[J]. Ecology Letters, 2016, 19(6):697-709. doi:  10.1111/ele.12591
[17] HÄTTENSCHWILER S, KÖRNER C.Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition[J]. Oecologia, 1997, 113(1):104-114. doi:  10.1007/s004420050358
[18] PERSSON H, AHLSTRÖM K, CLEMENSSON-LINDELL A. Nitrogen addition and removal at Gårdsjön: effects on fine-root growth and fine-root chemistry[J].Forest Ecology and Management, 1998, 101(1): 199-205. https://www.sciencedirect.com/science/article/pii/S0378112797001369
[19] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2):403-412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2007.01503.x
[20] SCHULZE E D. Air pollution and forest decline in a spruce(Picea abies)forest[J].Science, 1989, 244:776-783. doi:  10.1126/science.244.4906.776
[21] 李德军, 莫江明, 方运霆, 等.模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J].植物生态学报, 2005, 29(4):543-549. doi:  10.3321/j.issn:1005-264X.2005.04.004

LI D J, MO J M, FANG Y T, et al. Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical china[J], Acta Phytoecologica Sinica, 2005, 29(4):543-549. doi:  10.3321/j.issn:1005-264X.2005.04.004
[22] VAN DIJK H F G, DE LOUW M H J, ROELOFS J G M, et al. Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse (Part Ⅱ): effects on the trees[J].Environmental Pollution, 1990, 63(1):41-59. doi:  10.1016/0269-7491(90)90102-I
[23] 陈云明, 梁一民.黄土高原林草植被建设的地带性特征[J].植物生态学报, 2002, 26(3):339-345. doi:  10.3321/j.issn:1005-264X.2002.03.013

CHEN Y M, LIANG Y M. The zonal character of vegetation construction on loess plateau[J]. Acta Phytoecologica Sinica, 2002, 26(3):339-345. doi:  10.3321/j.issn:1005-264X.2002.03.013
[24] 徐化成, 李长喜, 唐谦.北京地区油松生态型变异的研究[J].林业科学研究, 1992, 5(2):142-148. http://www.cnki.com.cn/Article/CJFDTotal-LYKX199202002.htm

XU H C, LI C X, TANG Q. Pinus tabuliformis variation of ecological research in Beijing[J]. Forest Research, 1992, 5(2):142-148. http://www.cnki.com.cn/Article/CJFDTotal-LYKX199202002.htm
[25] LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China: an overview[J].Environmental Pollution, 2011, 159(10):2251-2264. doi:  10.1016/j.envpol.2010.08.002
[26] 姬明飞.中国主要森林树种功能性状变化规律以及驱动力的研究[D].兰州: 兰州大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012479948.htm

JI M F.The patterns and driving forces of plant functional traits in the forest biomes of China[D].Lanzhou: Lanzhou University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012479948.htm
[27] 汪金松, 模拟氮沉降对暖温带油松林土壤碳循环过程的影响[D].北京: 北京林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213993.htm

WANG J S.Effects of simulated nitrogen deposition on soil carbon cycling processes of Pinus tabuliformis forests in warm temperate of China[D].Beijing: Beijing Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213993.htm
[28] 朱建奎.山西太岳山地区森林土壤理化性状研究[D].北京: 北京林业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161686.htm

ZHU J K.Study on physico-chemical characteristics of forest soil on Taiyue Mountain in Shanxi Province[D].Beijing: Beijing Forestry University, 2009. http://cdmd.cnki.com.cn/article/cdmd-10022-2009161686.htm
[29] 刘保新.生长季山西太岳山油松人工林土壤呼吸速率研究[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011135022.htm

LIU B X.A study on the soil respiration rate of Pinus tabuliformis plantation in the growing season in Taiyue Mountain, Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011135022.htm
[30] 蒋思思, 魏丽萍, 杨松, 等.不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J].生态学报, 2015, 35(21):1-11. http://d.old.wanfangdata.com.cn/Periodical/stxb201521016

JIANG S S, WEI L P, YANG S, et al. Short term responses of photosynthetic pigments and nonstructural carbohydrates to simulated nitrogen deposition in three provenances of Pinus tabuliformis Carr. seedings[J]. Acta Ecological Sinica, 2015, 35(21):1-11. http://d.old.wanfangdata.com.cn/Periodical/stxb201521016
[31] ELBERSE I A M, VAN DAMME J M M, VAN TIENDEREN P H. Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation[J]. Journal of Ecology, 2003, 91(3):371-382. doi:  10.1046/j.1365-2745.2003.00776.x
[32] BAUER G A, BAZZAZ F A, MINOCHA R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States[J]. Forest Ecology and Management, 2004, 196(1):173-186. doi:  10.1016/j.foreco.2004.03.032
[33] LU X, MAO Q, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Global Change Biology, 2014, 20(12):3790-3801. doi:  10.1111/gcb.12665
[34] MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196(1):7-28. doi:  10.1016/j.foreco.2004.03.033
[35] NAKAJI T, FUKAMI M, DOKIYA Y, et al. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings[J]. Trees, 2001, 15(8):453-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70b1264427614269adf3e71da1343734
[36] 肖迪, 王晓洁, 张凯, 等.模拟氮沉降对五角枫幼苗生长的影响[J].北京林业大学学报, 2015, 37(10):50-57. doi:  10.13332/j.1000-1522.20150079

XIAO D, WANG X J, ZHANG K, et al. Effects of simulated nitrogen deposition on growth of Acer mono seedings[J]. Journal of Beijing Forestry University, 2015, 37(10):50-57. doi:  10.13332/j.1000-1522.20150079
[37] 顾峰雪, 黄玫, 张远东, 等. 1961—2010年中国区域氮沉降时空格局模拟研究[J].生态学报, 2016, 36(12):3591-3600.

GU F X, HUANG M, ZAHNG Y D, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961-2010[J]. Acta Ecologica Sinica, 2016, 36(12):3591-3600.
[38] SANTIAGO L S, WRIGHT S J, HARMS K E, et al. Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition[J]. Journal of Ecology, 2012, 100(2):309-316. doi:  10.1111/j.1365-2745.2011.01904.x
[39] 汪金松, 赵秀海, 张春雨, 等.模拟氮沉降对油松林土壤有机碳和全氮的影响[J].北京林业大学学报, 2016, 38(10): 88-94. doi:  10.13332/j.1000-1522.20140294

WANG J S, ZHAO X H, ZHANG C Y, et al.Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2016, 38(10):88-94. doi:  10.13332/j.1000-1522.20140294
[40] 汪金松, 王晨, 赵秀海, 等.模拟氮沉降对油松林单一及混合叶凋落物分解的影响[J].北京林业大学学报, 2015, 37(10): 14-21. doi:  10.13332/j.1000-1522.20140292

WANG J S, WANG C, ZHAO X H, et al. Effects of simulated nitrogen deposition on decomposition of single and mixed leaf litters in the plantation and natural forests of Pinus tabuliformis[J].Journal of Beijing Forestry University, 2015, 37(10):14-21. doi:  10.13332/j.1000-1522.20140292
[41] POORTER H, NAGEL O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review[J]. Functional Plant Biology, 2000, 27(12):1191-1191. doi:  10.1071/PP99173_CO
[42] 羊留冬, 王根绪, 杨阳, 等.峨眉冷杉幼苗叶片功能特征及其N, P化学计量比对模拟大气氮沉降的响应[J].生态学杂志, 2012, 31(1):44-50. http://d.old.wanfangdata.com.cn/Periodical/stxzz201201007

YANG L D, WANG G X, YANG Y, et al. Responses of leaf functional traits and nitrogen and phosphorus stoichiometry in Abies Fabiri seedings in Gongga Mountain to simulated nitrogen deposition[J]. Chinese Journal of Ecology, 2012, 31(1):44-50. http://d.old.wanfangdata.com.cn/Periodical/stxzz201201007
[43] FLVCKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification[J]. Environmental Pollution, 1998, 102(1):69-76. doi:  10.1016/S0269-7491(98)80017-1
[44] 段洪浪, 刘菊秀, 邓琦, 等. CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响[J].植物生态学报, 2009, 33(3):570-579. doi:  10.3773/j.issn.1005-264x.2009.03.016

DUAN H L, LIU J X, DEGN Q, et al. Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study[J]. Chinese Journal of Plant Ecology, 2009, 33(3):570-579. doi:  10.3773/j.issn.1005-264x.2009.03.016
[45] JOHANSSON M. The influence of ammonium nitrate on the root growth and ericoid mycorrhizal colonization of Calluna vulgaris (L.) Hull from a Danish heathland[J]. Oecologia, 2000, 123(3):418-424. doi:  10.1007/s004420051029
[46] WALCH-LIU P, IVANOV I I, FILLEUR S, et al. Nitrogen regulation of root branching[J]. Annals of Botany, 2006, 97(5): 875-881. doi:  10.1093/aob/mcj601
[47] ZHANG H, JENNINGS A, BARLOW P W, et al. Dual pathways for regulation of root branching by nitrate[J]. Proceedings of the National Academy of Sciences, 1999, 96(11):6529-6534. doi:  10.1073/pnas.96.11.6529
[48] 杜启燃.不同种源栓皮栎幼苗对CO2增加和N增加的生理生态特性响应[D].武汉: 华中农业大学, 2013: 1-81. http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336108.htm

DU Q R.The eco-physiological response of different source Quercus variabilis seedlings to increased atmospheric CO2 and N addition[D].Wuhan: Huazhong Agricultural University, 2013: 1-81. http://cdmd.cnki.com.cn/Article/CDMD-10504-1013336108.htm