[1] ZHANG S, AMATEIS R L, BURKHART H E. Constraining individual tree diameter increment and survival models for loblolly pine plantations[J]. Forest Science, 1997, 43(6): 414-423. http://europepmc.org/abstract/AGR/IND21235335
[2] CIESZEWSKI C J. Comparing fixed-and variable-base-age site equations having single versus multiple asymptotes[J]. Forest Science, 2002, 48(1): 7-23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027400739/
[3] TEWARI V P, ÁLVAREZ-GONZALEZ J G, GARCÍA O. Developing a dynamic growth model for teak plantations in India[J]. Forest Ecosystems, 2014, 1(1): 9-17. doi:  10.1186/2197-5620-1-9
[4] RITCHIE M W, HANN D W. Implications of disaggregation in forest growth and yield modeling[J]. Forest Science, 1997, 43 (2): 223-233. http://europepmc.org/abstract/AGR/IND21235281
[5] QIN J, CAO Q V. Using disaggregation to link individual-tree and whole-stand growth models[J]. Canadian Journal of Forest Research, 2006, 36: 953-960. doi:  10.1139/x05-284
[6] GONZALEZ J G, ZINGG A, GADOW K V. Estimating growth in beech forests: a study based on longterm experiments in Switzerland[J]. Annals of Forest Science, 2009, 307(9): 1-13. doi:  10.1051%2Fforest%2F2009113
[7] RITCHIE M W, HANN D W. Implications of disaggregation in forest growth and yield modeling[J]. Forest Science, 1997, 43 (2): 223-233. http://europepmc.org/abstract/AGR/IND21235281
[8] BURKHART H E, TOME M. Modeling forest trees and stands[M]. Berlin: Springer, 2012.
[9] 陈清, 张令峰, 傅松玲.树木年龄和断面积对加拿大北方林树木死亡率的影响[J].应用生态学报, 2011, 22(9): 2477-2481. http://d.old.wanfangdata.com.cn/Periodical/yystxb201109038

CHEN Q, ZHANG L F, FU S L. Effects of tree age and basal area on boreal forest tree mortality in Canada[J]. Chinese Journal of Applied Ecology, 2011, 22(9): 2477-2481. http://d.old.wanfangdata.com.cn/Periodical/yystxb201109038
[10] 雷相东, 李永慈, 向玮.基于混合模型的单木断面积生长模型[J].林业科学, 2009, 45(1): 74-80. doi:  10.3321/j.issn:1001-7488.2009.01.014

LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74-80. doi:  10.3321/j.issn:1001-7488.2009.01.014
[11] 符利勇, 唐守正, 张会儒, 等.基于多水平非线性混合效应蒙古栎林单木断面积模型[J].林业科学研究, 2015, 28(1): 23-31. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501004

FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23-31. http://d.old.wanfangdata.com.cn/Periodical/lykxyj201501004
[12] 倪成才, 王庆丰.火炬松人工林胸高断面积差分模型的拟合与筛选[J].北京林业大学学报, 2011, 33(3): 1-7. doi:  10.3969/j.issn.1671-6116.2011.03.001

NI C C, WANG Q F. Model selection and fit of algebraic difference models for basal area of loblolly pine plantations[J]. Journal of Beijing Forestry University, 2011, 33(3): 1-7. doi:  10.3969/j.issn.1671-6116.2011.03.001
[13] 李春明, 唐守正.基于非线性混合模型的落叶松云冷杉林分断面积模型[J].林业科学, 2010, 46(7): 106-113. http://d.old.wanfangdata.com.cn/Periodical/lykx201007016

LI C M, TANG S Z. The basal area model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jezoensis based on nonlinear mixed model[J]. Scientia Silvae Sinicae, 2010, 46(7): 106-113. http://d.old.wanfangdata.com.cn/Periodical/lykx201007016
[14] 张雄清, 张建国, 段爱国.杉木人工林林分断面积生长模型的贝叶斯法估计[J].林业科学研究, 2015, 28(4): 538-542. doi:  10.3969/j.issn.1001-1498.2015.04.013

ZHANG X Q, ZHANG J G, DUAN A G. Application of bayesian method in stand basal area prediction of Chinese fir plantation[J]. Forest Research, 2015, 28(4): 538-542. doi:  10.3969/j.issn.1001-1498.2015.04.013
[15] 张雄清, 雷渊才, 陈新美.林分断面积组合预测模型权重确定的比较[J].林业科学, 2011, 47(7): 36-41. http://d.old.wanfangdata.com.cn/Periodical/lykx201107006

ZHANG X Q, LEI Y C, CHEN X M. Comparison of weight computation in stand basal area combined model[J]. Scientia Silvae Sinicae, 2011, 47(7): 36-41. http://d.old.wanfangdata.com.cn/Periodical/lykx201107006
[16] VALBUENA P, DELPESO C, BRAVO F. Stand density management diagrams for two mediterranean pine species in eastern spain[J]. Investigación Agraria: Sistemas Recursos Forestales, 2008, 17(2): 97-104. doi:  10.5424/srf/2008172-01026
[17] ZHANG X, LEI Y, CAO Q V, et al. Improving tree survival prediction with forecast combination and disaggregation[J]. Canadian Journal of Forest Research, 2011, 41: 1928-1935. doi:  10.1139/x11-109
[18] ANDREA H, CAO Q V, ALVAREZ J G, et al. Compatibility of whole-stand and individual-tree models using composite estimators and disaggregation[J]. Forest Ecology and Management, 2015, 348(11): 46-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38160e55b539dc3a70a82cf617f9ea25
[19] ARANDA D U, GRANDAS J A, ALVAREZ J G, et al. Site quality curves for birch stands in north-western Spain[J]. Silva Fennica, 2006, 40 (4): 631-644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6b7779e4c77cdd32c556b781c213438
[20] 王冬至, 张冬燕, 王方, 等.塞罕坝主要立地类型针阔混交林树高曲线构建[J].北京林业大学学报, 2016, 38(10): 7-14. doi:  10.13332/j.1000-1522.20150359

WANG D Z, ZHANG D Y, WANG F, et al. Height curve construction of needle and broadleaved mixed forest under main site types in Saihanba, Hebei of northern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 7-14. doi:  10.13332/j.1000-1522.20150359
[21] GARCIA O. A parsimonious dynamic stand model for interior spruce in British Columbia[J]. Forest Science, 2011, 57 (4): 265-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47de0ae6bf440ef1a8dd3cec62145e98
[22] GARCIA O. Building a dynamic growth model for trembling aspen in western Canada without age data[J]. Canadian Journal of Forest Research, 2013, 43 (3): 256-265. doi:  10.1139/cjfr-2012-0366
[23] GARCIA O, BURKHART H E, AMATEIS R L. A biologically-consistent stand growth model for loblolly pine in the Piedmont physiographic region, USA[J]. Forest Ecology and Management, 2011, 262 (11): 2035-2041. doi:  10.1016/j.foreco.2011.08.047
[24] CAO Q V. Linking individual-tree and whole-stand models for forest growth and yield prediction[J]. Forest Ecosystems, 2014, 1: 1-8. doi:  10.1186/2197-5620-1-1
[25] JUMA R, PUKKALA T, DEMIGUEL S, et al. Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals-a case study for Pinus patula in Kenya[J]. Forest Ecosystems, 2014, 8(1): 1-14. doi:  10.1186/s40663-014-0014-3
[26] BATES J M, GRANGER C W J. The combination of forecasts[J]. A Quarterly Journal of Operations Research, 1969, 20 (4): 451-468. doi:  10.1057/jors.1969.103
[27] VANCLAY J K. Modelling forest growth and yield: application to mixed tropical forests[M]. Wallingford: CAB International, 1994.
[28] ZHANG X, LEI Y. A linkage among whole-stand model, individual-tree model and diameter-distribution model[J]. Journal of Forest Science, 2010, 56: 600-608. doi:  10.17221/102/2009-JFS
[29] CRECENTE-CAMPO F, SOARES P, TOME M, et al. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations[J]. Forest Ecology and Management, 2010, 260: 1965-1974. doi:  10.1016/j.foreco.2010.08.044
[30] CAO Q V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46: 127-131. http://europepmc.org/abstract/AGR/IND22301989
[31] NORD-LARSEN T. Modeling individual-tree growth from data with highly irregular measurement intervals[J]. Forest Science, 2006, 52: 198-208.
[32] CAO Q V, STRUB M. Evaluation of four methods to estimate parameters of an annual tree survival and diameter growth model[J]. Forest Science, 2008, 54 (6): 617-624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=456a6d7c29b0fedca89786f7af26405a
[33] WYKOFF W R. A basal area increment model for individual conifers in the northern Rocky Mountains[J]. Forest Science, 1990, 36 (4): 1077-1104. http://europepmc.org/abstract/AGR/IND91008565
[34] MONSERUD R A, STERBA H. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80 (3): 57-80. https://www.sciencedirect.com/science/article/pii/0378112795036385