[1] WANG S S, SHEN X H, YAO L H, et al. A comparative study on growth patterns of Pinus tabulaeformis clones in Xingcheng seed orchard, Liaoning Province [J]. Journal of Beijing Forestry College, 1985, 7(4): 72-83.
[2] CHEN K M, ABBOTT R J, MILNE R I, et al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China [J]. Molecular Ecology, 2008, 17(19): 4276-4288.
[3] CHEN B W, ZHENG Y, SHEN X H. Studies on selection methods and criteria of plus trees in Pinus tabulaeformis Carr. [J]. Journal of Beijing Forestry University, 1992, 14(1): 7-13.
[4] YUAN H W, LI Z X, FANG P, et al. Variation and stability in female strobili production of a first-generation clonal Seed orchard of Chinese pine (Pinus tabuliformis) [J]. Silvae Genetica, 2014, 63(1-2): 41-47.
[5] 王沙生, 沈熙环, 姚丽华, 等. 兴城油松种子园无性系生长比较研究 [J]. 北京林学院学报, 1985, 7(4): 72-83.
[6] ZHANG D M, YANG Y, SHEN X H, et al. Selection of primers and establishment of SSR-PCR reaction system on Pinus tabuliformi Carr.[J]. Journal of Beijing Forestry University, 2007, 29(2): 13-17.
[7] 陈伯望, 郑云, 沈熙环. 油松优树选择方法的研究 [J]. 北京林业大学学报, 1992, 14(1): 7-13.
[8] GRIFFIN A R, LINDGREN D. Effect of inbreeding on production of filled seed in Pinus radiata-experimental results and a model of gene action [J]. Theoretical and Applied Genetics, 1985, 71(2): 334-343.
[9] DEVEY M E, BELL J C, UREN T L, et al. A set of microsatellite markers for fingerprinting and breeding applications in Pinus radiata [J]. Genome, 2002, 45: 984-989.
[10] PENA S D J, CHAKRABORTY R. Paternity testing in the DNA era [J]. Trends in Genetics, 1994, 10(6): 204-209.
[11] LUIKART G, ENGLAND P R. Statistical analysis of microsatellite DNA data [J]. Trends in Ecology and Evolution, 1999, 14(7): 253-256.
[12] NIELSEN R, MATTILA D, CLAPHAM P J, et al. Statistical approaches to paternity analysis in natural populations and applications to the Northern Atlantic humpback whale [J]. Genetics, 2001, 157(4): 1673-1682.
[13] JONES A G, AREREN W R. Methods of parentage analysis in natural populations [J]. Molecular Ecology, 2003, 12(10): 2511-2523.
[14] GRATTAPAGLIA D, RIBEIRO V J, REZENDE G D S P. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus[J]. Theoretical and Applied Genetics, 2004, 109(1): 192-199.
[15] EL-KASSABY Y A, LSTIBUREK M. Breeding without breeding [J]. Genetics Research, 2009, 91(2): 111-120.
[16] EL-KASSABY Y A, KLAPSTE J, GUY R D. Breeding without breeding: selection using the genomic best linear unbiased predictor method (GBLUP) [J]. New Forests, 2012, 43(5-6): 631-637.
[17] WANG X R, TORIMARU T, LINDGREN D, et al. Marker-based parentage analysis facilitates low input ‘breeding without breeding’ strategies for forest trees [J]. Tree Genetics Genomes, 2009, 6(2): 227-235.
[18] ZHAO P, ZHANG S X, WOESTE K. Genotypic data changes family rank for growth and quality traits in a black walnut (Juglans nigra L.) progeny test [J]. New Forests, 2013, 44: 357-368.
[19] MASSAH N, WANG J L, RUSSELL J H, et al. Genealogical relationship among members of selection and production populations of yellow cedar (Callitropsis nootkatensis [D. Don] Oerst.) in the absence of parental information [J]. Journal of Heredity, 2010, 101(2): 154-163.
[20] WANG J L, EL-KASSABY Y A, RITLAND K. Estimating selfing rates from reconstructed pedigrees using multilocus genotype data [J]. Molecular Ecology, 2012, 21(1): 100-116.
[21] KLÁPŠT J, LSTIBUREK M, EL-KASSABY Y A. Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker- based relationship [J]. Tree Genetics Genomes, 2014, 10(2): 241-249.
[22] SHIMONO A, WANG X R, TORIMARU T, et al. Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel “breeding without breeding” strategy [J]. Tree Genetics Genomes, 2011, 7(3): 499-509.
[23] POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.
[24] 张冬梅, 杨娅, 沈熙环, 等. 油松SSR-PCR引物筛选及反应体系的建立 [J]. 北京林业大学学报, 2007, 29(2): 13-17.
[25] FANG P, NIU S H, YUAN H W, et al. Development and characterization of 25 EST-SSR markers in Pinus sylvestris var. mongolica (Pinaceae) [J/OL]. Applications in Plant Sciences, 2014, 2(1): apps.1300057[2015-09-28]. http:∥doi.org/10.3732/apps.1300057.
[26] BECHER W A. Manual of quantitative genetics [M]. 4th ed. Ann Arbor: Academic Enterprises, 1985.
[27] KANG K S, LINDGREN D. Fertility variation among clones of Korean pine (Pinus koraiensis S. et Z.) and its implications on seed orchard management [J]. Forest Genetics, 1999, 6(3): 191-200.
[28] HODGE G R, WHITE T L. Advanced-generation wind-pollinated seed orchard design [J]. New Forests, 1993, 7(3): 213-236.