[1] PEPIN N C, SEIDEL D J. A global comparison of surface and free-air temperatures at high elevations[J] . Journal of Geophysical Research: Atmospheres, 2005, 110: 3104-3118.
[2] LI L, CHEN X G, WANG Z Y, et al. Climate change and its regional differences over the Tibetan Plateau[J] . Advances in Climate Change Research, 2010, 6(3): 181-186.
[3] BURROWS M T, SCHOEMAN D S, BUCKLEY L B, et al. The pace of shifting climate in marine and terrestrial ecosystems[J] . Science, 2011, 334: 652-655.
[4] WANG G X, GUO X Y, CHENG G D. Dynamic variations of landscape pattern and the landscape ecologial functions in the Source Area of the Yellow River[J] . Acta Ecologica Sinca, 2002, 22(10): 1587-1598.
[5] ZHOU W, GANG C C, LI J L, et al. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982—2010[J] . Acta Geographica Sinica, 2014, 69(1): 15-30.
[6] JI F, WU Z, HUANG J. Evolution of land surface air temperature trend[J] . Nature Climate Change, 2014, 4(6): 462-466.
[7] STOCKER T F, QIN D, PLATTNER G K, et al. IPCC, 2013: climate change 2013: the physical science basis[C] ∥Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Geneva:Intergovernmental Panel on Climate Change,2013.
[8] WANG J. Land resources remote sensing monitoring and evaluation methods[M] . Beijing: Science Press, 2006.
[9] ZHOU X J, ZHAO P, CHEN J M, et al. Research on the effects of the thermal effect of the Qinghai-Tibet Plateau climate in the northern hemisphere[J] . Science China: D, 2009, 39(11): 1473-1486.
[10] 李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J] . 气候变化研究进展, 2010, 6(3): 181-186.
[11] ZHANG Y L, QI W, ZHOU C P,et al. The temporal and spatial differentiation of alpine grassland net primary productivity (NPP) in Qinghai-Tibet Plateau.[J] . Acta Geographica Sinica, 2013, 68(9): 1197-1211.
[12] 王根绪, 郭晓寅, 程国栋. 黄河源区景观格局与生态功能的动态变化[J] . 生态学报, 2002, 22(10): 1587-1598.
[13] LI Z G. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change[J] . Journal of Resources and Ecology, 2014, 5(2): 123-131.
[14] LIU J Y, XU X L, SHAO Q Q. The space-time characteristics of grassland degradation Qinghai Sanjiangyuan region for nearly 30 years[J] . Acta Geographica Sinica, 2008, 63(4): 364-376.
[15] 周伟, 刚成诚, 李建龙, 等. 1982—2010年中国草地覆盖度的时空动态及其对气候变化的响应[J] . 地理学报, 2014, 69(1): 15-30.
[16] WANG J S, ZHANG X Z, ZHAO Y P, et al. Spatioemporal pattern of alpine grassland productivity in Qingtang Plateau[J] . Chinese Joumal of Applied Ecology, 2010, 21(6): 1400-1404.
[17] 王静. 土地资源遥感监测与评价方法[M] . 北京:科学出版社, 2006.
[18] LIU S Y, SHANGGUAN D H, DING Y J, et al. The glacier change of Ganggabu mountain in the southeast of the Tibetan Plateau since the beginning of the 20th century[J] . Journal of Glaciology and Geocryology, 2005, 27(1): 55-63.
[19] ZHAO R, LIU J, QIAN X. Study on the landscape pattern characteristics of the Qinghai-Tibet Plateau based on GIS[C] ∥Proceedings of first international conference on agro-geoinformatics. Shanghai:IEEE, 2012: 1-6.
[20] LU P L. The remote sensing research of the lakes changein the Hoh Xil area in Qinghai[D] . Beijing: China University of Geosciences, 2006.
[21] BAI J H, LU Q Q, WANG J J, et al. Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige plateau of China[J] . Journal of Mountain Science, 2013, 10(1): 54-67.
[22] Qinghai Hoh Xil National Nature Reserve Administrtive Bereau. The overall plan of Kekexili national nature reserve in Qinghai[R] . Golmud: Qinghai Hoh Xil National Nature Reserve Administrtive Bereau, 2004.
[23] CHEN B X, ZHANG X X, TAO J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau[J] . Agricultural and Forest Meteorology, 2014, 189: 11-18.
[24] GUO K. Vegetation of Qinghai Hoh Xil region[J] . Acta Phytoecologica et Geobotanica Sinica, 1993, 17(2): 120-132.
[25] LI J, GE C, LI Z Q, et al. Summer bird diversity along the Qinghai section of the Qinghai-Tibet railway[J] . Sichuan Journal of Zoology, 2010, 29(4): 657-659.
[26] 周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J] . 中国科学: D辑, 2009, 39(11): 1473-1486.
[27] 张镱锂, 祁威, 周才平, 等. 青藏高原高寒草地净初级生产力(NPP)时空分异[J] . 地理学报, 2013, 68(9): 1197-1211.
[28] DAI C D, LEI L P. The imformation characteristics of thematic mapper data and the optimal band combination[J] . Remote Sensing of Environment, 1989, 4(4): 282-292.
[29] LIU S Y, ZHANG L, WANG C Z, et al. Based on the MODIS data Qinghai-Tibet Plateau vegetation phenology change trend of the research(2000—2010)[J] . Remote Sensing Information, 2014, 29(6): 25-30.
[30] 刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征[J] . 地理学报, 2008, 63(4): 364-376.
[31] 王景升, 张宪洲, 赵玉萍, 等. 羌塘高原高寒草地生态系统生产力动态[J] . 应用生态学报, 2010, 21(6): 1400-1404.
[32] CHI D C, WANG D W. Regional reference crop evapotranspiration quantity evolution characteristics and model research[M] . Beijing: China Water and Power Press, 2010.
[33] YAO X J, LIU S Y, LI L,et al. Spatial-temporal characteristics of lake area variations in Hoh Xil region from 1970 to 2011[J] . Journal of Geographical Sciences, 2014, 24(4): 689-702.
[34] LIU S F, YANG Y J, WU L F. The grey system theory and its application [M] . 7th ed. Beijing: Science Press, 2014.
[35] 刘时银, 上官冬辉, 丁永建, 等. 20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J] . 冰川冻土, 2005, 27(1): 55-63.
[36] FAN Q C, LI X L. The relation between alpine meadow productivity and climate factors in Qinghai region [J] . Pratacultural Science, 2008, 20(3): 331-339.
[37] LI F X, CHANG G G, XIAO J S, et al. Study on the relationship between the wetland of the Yellow River source region changes and climate change[J] . Journal of Natural Resources, 2009, 24(4): 683-690.
[38] 鲁萍丽. 青海可可西里地区湖泊变化的遥感研究[D] . 北京: 中国地质大学, 2006.
[39] DENG J L. The grey control system[J] . Journal of Huazhong University of Science and Technology, 1982, 10(3): 9-18.
[40] 可可西里自然保护区管理局. 青海可可西里国家级自然保护区总体规划[R] . 格尔木:可可西里自然保护区管理局,2004.
[41] 郭柯. 青海可可西里地区的植被[J] . 植物生态学与地植物学学报, 1993, 17(2): 120-132.
[42] SUN Q M, LIU T, HAN Z Q, et al. Remote sensing analysis of northern Tianshan mountain vegetation cover multiple time scale response to climate change[J] . Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 248-255.
[43] HUANG Y M, ZHANG X P. Analysis the characteristics of space-time distribution of precipitation of the Qinghai-Tibet Plateau[D] . Changsha: Hunan Normal University, 2007.
[44] 李靖, 葛晨, 李忠秋, 等. 青藏铁路可可西里区段沿线的夏季鸟类[J] . 四川动物, 2010, 29(4): 657-659.
[45] LUO D L, JIN H J. Variations of air temperature and precipitation from 1953 to 2012 in the Madoi station in the sources areas of the Yellow River[J] . Journal of Arid Land Resources and Environment, 2014, 28(11): 185-192.
[46] 戴昌达, 雷莉萍. TM图像的光谱信息特征与最佳波段组合[J] . 环境遥感, 1989, 4(4): 282-292.
[47] 刘双俞, 张丽, 王翠珍, 等. 基于MODIS数据的青藏高原植被物候变化趋势研究(2000年—2010年)[J] . 遥感信息, 2014, 29(6): 25-30.
[48] DING M J, LI L H, ZHANG Y L, et al. The Qinghai-Tibet Plateau and the surrounding area changes of temperature and the elevation sensitivity analysis in 1971—2012[J] . Resources Science, 2014, 36(7): 1509-1518.
[49] ALLEN R, PEREIRAUIS S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[M] . Rome: Food and Agriculture Organization of the United Nations, 1998.
[50] JIANG S, YANG T B, TIAN H Z. Glacier shrinkage and its dependence on climate in the Malan Mountain in past 40 years based on RS and GIS[J] . Journal of Glaciology and Geocryology, 2012, 34(3): 522-29.
[51] WANG M, LI Y, HUANG R Q, et al. The effects of climate warming on the alpine vegetation of the Qinghai-Tibetan Plateau hinterland[J] . Acta Ecologica Sinica, 2005, 25(6): 1275-1281.
[52] 迟道才, 王殿武. 区域参考作物腾发量演变特征及预测模型研究[M] . 北京: 中国水利水电出版社, 2010.
[53] XU X K, CHEN H, LEVY J K. Under the background of climate warming on the Tibetan Plateau vegetation spatial and temporal variations of characteristics and genetic analysis[J] . Science Bulletin, 2008, 53(4): 456-462.
[54] 刘思峰, 杨英杰, 吴李峰. 灰色系统理论及其应用[M] .7版. 北京: 科学出版社, 2014.
[55] WANG G X, LI Y S, WU Q B, et al. The Qinghai-Tibet Plateau permafrost regions and the relationship between vegetation and its effects on alpine ecosystem[J] . Science China: D, 2006, 36(8): 743-754.
[56] XU J H, CHEN Y N, JI M H, et al. Climate change and its effects on runoff of Kaidu River, Xinjiang, China: a multiple time-scale analysis[J] . Chinese Geographical Science, 2008, 18(4): 331-339.
[57] 范青慈, 李希来. 青海高寒草甸草地生产力与气候因素的灰色关联度分析[J] . 草业科学, 2003, 20(3): 8-12.
[58] LIU S L, ZHAO H D, DONG S K, et al. Based on SPEI nearly 50 years of the Qinghai-Tibet Plateau alpine grassland nature reserve, climate change research[J] . Ecology and Environmental Sciences, 2014 23(12): 1883-1888.
[59] MA S J. The investigation and study of grassland resources status quo on the Tanggula Mountain and Hoh Xil in the Tibetan Plateau[J] . Pratacultural Science, 2007, 24(9): 15-19.
[60] 李凤霞, 常国刚, 肖建设, 等. 黄河源区湿地变化与气候变化的关系研究[J] . 自然资源学报, 2009, 24(4): 683-690.
[61] CHEN H, LI S C, ZHENG D. The ecosystem characteristics on the line of the Qinghai-Tibet road and the impact of road construction[J] . Journal of Mountain Science, 2003, 21(5): 559-567.
[62] 邓聚龙. 灰色控制系统[J] . 华中工学院学报, 1982, 10(3): 9-18.
[63] 孙钦明, 刘彤, 韩志全, 等. 遥感分析天山北部植被覆盖对气候变化的多时间尺度响应[J] . 农业工程学报, 2014, 30(15): 248-255.
[64] 黄一民, 章新平. 青藏高原降水时空分布特征分析[D] . 长沙: 湖南师范大学, 2007.
[65] 罗栋梁, 金会军. 黄河源区玛多县1953—2012年气温和降水特征及突变分析[J] . 干旱区资源与环境, 2014, 28(11): 185-192.
[66] 丁明军, 李兰晖, 张镱锂, 等. 1971—2012年青藏高原及周边地区气温变化特征及其海拔敏感性分析[J] . 资源科学, 2014, 36(07): 1509-1518.
[67] 姜珊, 杨太保, 田洪阵. 2010年基于RS和GIS的马兰冰川退缩与气候变化关系研究[J] . 冰川冻土, 2012, 34(3): 522-529.
[68] 王谋, 李勇, 黄润秋, 等. 气候变暖对青藏高原腹地高寒植被的影响[J] . 生态学报, 2005, 25(6): 1275-1281.
[69] 徐兴奎, 陈红, LEVY J K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J] . 科学通报, 2008, 53(4): 456-462.
[70] 王根绪, 李元首, 吴青柏, 等. 青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J] . 中国科学: D辑,2006, 36(8): 743-754.
[71] 刘世梁, 赵海迪, 董世魁, 等. 基于SPEI的近50年青藏高原高寒草地自然保护区气候变化研究[J] . 生态环境学报, 2014, 23(12): 1883-1888.
[72] 马松江. 青藏高原唐古拉山及可可西里草地资源现状调查研究[J] . 草业科学, 2007, 24(9): 15-19.
[73] 陈辉, 李双成, 郑度.青藏公路铁路沿线生态系统特征及道路修建对其影响[J] . 山地学报, 2003, 21(5): 559-567.