[1] Llorens P, Domingo F. Rainfall partitioning by vegetation under Mediterranean conditions: a review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1-2): 37-54. doi:  10.1016/j.jhydrol.2006.10.032
[2] Gerrits A M J, Pfister L, Savenije H H G. Spatial and temporal variability of canopy and forest floor interception in a beech forest[J]. Hydrological Processes, 2010, 24(21): 3011-3025. doi:  10.1002/hyp.v24:21
[3] Carlyle-Moses D E, Gash J H C. Rainfall interception loss by foest canopies[M]//Levia D F, Carlyle-Moses D, Tanaka T. Forestry hydrology and biogeochemistry: synthesis of past research and future directions. Berlin: Springer, 2011: 407-423.
[4] Savenije H H G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary[J]. Hydrological Processes, 2004, 18(5): 1507-1511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2916e4a0aee2441111de00f34e08b5c9
[5] Sutanto S J, Wenninger J, Coenders-Gerrits A M J, et al. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model[J]. Hydrology and Earth System Sciences, 2012, 16(5): 2605-2616. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c3a4e3cc042204c2ffed67a76312bd46
[6] Xiao Q F, Mcpherson E G. Rainfall interception of three trees in Oakland, California[J].Urban Ecosystems, 2011, 14(1): 755-769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=099621e7f405fe3982c2a7ff0b5f1fa2
[7] Aston A R. Rainfall interception by eight small trees[J]. Journal of Hydrology, 1979, 42(3): 383-396. doi:  10.1016-0022-1694(79)90057-X/
[8] Van Dijk A I J M, Gash J H, Van Gorsel E, et al. Rainfall interception and the coupled surface water and energy balance[J]. Agricultural and Forest Meteorology, 2015, 201-215(6): 402-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63c620bd32397defaf658c245f41f201
[9] Murray S J. Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources[J]. Ecohydrology, 2014, 7(1): 102-114. doi:  10.1002/eco.v7.1
[10] Xiao Q F, McPherson E G, Ustin S L, et al. A new approach to modeling tree rainfall interception[J]. Journal of Geophysical Research Atmospheres, 2000, 105(10): 29173-29188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b8c1a9e9900861470f5163fbd5d5335
[11] Gerrits A M J, Savenije H H G. Treatise on water science[M]. Oxford: Elsevier, 2011.
[12] Li X, Xiao Q, Niu J, et al. Process-based rainfall interception by small trees in Northern China: the effect of rainfall traits and crown structure characteristics[J]. Agricultural and Forest Meteorology, 2016, 218-219(3): 65-73.
[13] Rutter A J. A predictive model of rainfall interception in forests: derivation of the model from observations in a plantation of Corsican pine[J]. Agricultural Meteorology, 1971, 9(2): 367-384.
[14] Rutter A J, Morton A J, Robins P C. A predictive model of rainfall interception in forests(Ⅱ): generalization of the model and comparison with observations in some coniferous and hardwood stands[J]. Journal of Applied Ecology, 1975, 12(l): 367-380.
[15] Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological, 1979, 105(443): 43-55. doi:  10.1002/(ISSN)1477-870X
[16] Gash J H C, Llotd C R, Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1-4): 79-86. doi:  10.1016/0022-1694(95)02697-N
[17] 王彦辉, 于澎涛, 徐德应, 等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报, 1999, 20(6):25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm

Wang Y H, Yu P T, Xu D Y, et al. A preliminary study on transformation of rainfall interception models and parameter's variation[J]. Journal of Beijing Forestry University, 1999, 20(6): 25-30. http://www.cnki.com.cn/Article/CJFDTotal-BJLY806.004.htm
[18] Sato Y, Kumagai T, Kume A, et al. Experimental analysis of moisture dynamics of litter layers-the effect of rainfall conditions and leaf shapes[J]. Hydrological Processes, 2004, 18(3): 3007-3018. doi:  10.1002/hyp.5746
[19] Muzylo A, Llorens P, Valente F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1-4): 191-206. doi:  10.1016/j.jhydrol.2009.02.058
[20] Guevara-Escobar A, Gonzalez-Sosa E, Ramos-Salinas M, et al. Experimental analysis of drainage and water storage of litter layers[J]. Hydrology and Earth System Science, 2007, 11(5): 1703-1716. doi:  10.5194/hess-11-1703-2007
[21] 霍云梅, 毕华兴, 朱永杰, 等. QYJY-503C人工模拟降雨装置降雨特性试验[J].中国水土保持科学, 2015, 13(2):31-36. doi:  10.3969/j.issn.1672-3007.2015.02.005

Huo Y M, Bi H X, Zhu Y J, et al. Characteristics of artificial rainfall produced by QYJY-503C simulation system[J]. Science of Soil and Water Conservation, 2015, 13(2): 31-36. doi:  10.3969/j.issn.1672-3007.2015.02.005
[22] 钟一丹, 贾仰文, 李志威.北京地区近53年最大1小时降雨强度的时空变化规律[J].水文, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007

Zhong Y D, Jia Y W, Li Z W. Spatial and temporal changes of maximum 1 h precipitation intensity in Beijing region in last 53 years[J]. Journal of China Hydrology, 2013, 33(1):32-37. http://d.old.wanfangdata.com.cn/Periodical/sw201301007
[23] Pitman J I. Rainfall interception by Bracjen in open habitats: relations between leaf area, canopy storage and drainage rate[J]. Journal of Hydrology, 1989, 105(3-4): 317-334. doi:  10.1016/0022-1694(89)90111-X
[24] Calder I R, Hall R L, Rosier P T W, et al. Dependence of rainfall interception on drop size(2): experimental determination of the wetting functions and two-layer stochastic model parameters for five tropical tree species[J]. Journal of Hydrology, 1996, 185(1): 379-388. doi:  10.1016-0022-1694(95)02999-0/
[25] 史宇.北京山区主要优势树种森林生态系统生态水文过程分析[D].北京: 北京林业大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm

Shi Y. Eco-hydrological process analysis on forest ecosystems of major dominant species in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2011. http://cdmd.cnki.com.cn/article/cdmd-10022-1011132763.htm
[26] 张艺.北京山区森林植被结构对降雨输入过程的影响[D].北京: 北京林业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm

Zhang Y. Effects of forest vegetation structure on rainfall input process in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213960.htm
[27] Wang A, Diao Y, Pei T, et al. A semi-theoretical model of canopy rainfall interception for a broad-leaved tree[J]. Hydrological Processes, 2007, 21(3):2458-2463. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf8f88b63ce20574e8fe3c3a7f41fd38
[28] Keim R F, Skaugset A E, Weiler M. Storage of water on vegetation under simulated rainfall of varying intensity[J]. Advances in Water Resource, 2006, 29(7): 974-986. doi:  10.1016/j.advwatres.2005.07.017
[29] Fleschbein K, Wilcke W, Goller R, et al. Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties[J].Hydrological Processes, 2005, 19(7): 1355-1371. doi:  10.1002/(ISSN)1099-1085
[30] Gómez J A, Giráldez J V, Fereres E. Rainfall interception by olive trees in relation to leaf area[J]. Agricultural Water Management, 2001, 49(1): 65-76.
[31] Galdosa F V, Álvareza C, Garcíaa A, et al. Estimated distributed rainfall interception using a simple conceptual model and moderate resolution imaging spectroradiometer (MODIS)[J]. Journal of Hydrology, 2012, 468(6): 213-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bbf6988f91c91a68ae633cd601da8b8