[1] |
Fahy D, Sanad M N, Duscha K, et al. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY[J].Scientific Report, 2017, 7:39069. doi: 10.1038/srep39069 |
[2] |
Hu J, Desai M. Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b[J]. Plant Physiol, 2008, 146(3):1117-1127. doi: 10.1104/pp.107.113555 |
[3] |
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function[J]. Arabidopsis Book, 2011, 7:e0123. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216077348/ |
[4] |
Gao F Y, Li L, Wang J Y, et al.The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi[J].Yi Chuan, 2017, 39(10):908-917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yc201710005 |
[5] |
Homs S, Erdmann R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation[J]. Febs Journal, 2005, 272(20):5169-5181. doi: 10.1111/ejb.2005.272.issue-20 |
[6] |
Lingard M J, Gidda S K, Bingham S, et al. Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes[J]. Plant Cell, 2008, 20(6):1567-1585. doi: 10.1105/tpc.107.057679 |
[7] |
Farre J C, Subramani S. Peroxisome turnover by micropexophagy:an autophagy-related process[J]. Trends Cell Biology, 2004, 14(9):515-523. doi: 10.1016/j.tcb.2004.07.014 |
[8] |
Hu J P, Aguirre M, Peto C, et al. A role for peroxisomes in photomorphogenesis and development of Arabidopsis[J].Science, 2002, 297:405-409. doi: 10.1126/science.1073633 |
[9] |
An C, Gao Y, Li J, et al.Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis[J]. Plant Cell Reports, 2017, 36(7):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86445c47a9952e6fe6020fce763b3556 |
[10] |
Orth T, Reumann S, Zhang X, et al. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis[J]. Plant Cell, 2007, 19(1):333-350. doi: 10.1105/tpc.106.045831 |
[11] |
Rodríguez-serrano M, Romero-puertas M C, Sanz-fernández M, et al. Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a[J]. Plant Physiol, 2016, 171(3): 1665-1674. doi: 10.1104/pp.16.00648 |
[12] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349. doi: 10.1016/j.ecoenv.2004.06.010 |
[13] |
Jaleel C A, Gopi R, Manivannan P, et al. Antioxdative potentials as a protective mechanism in Catharanthus roseus(L.)G.Don.plants under salinity stress[J]. Turkish Journal of Botany, 2007, 31(3):245-251. http://journals.tubitak.gov.tr/botany/issues/bot-07-31-3/bot-31-3-5-0606-9.pdf |
[14] |
Xing Y, Jia W, Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. Plant Journal, 2008, 54(3):440-451. doi: 10.1111/j.1365-313X.2008.03433.x |
[15] |
Slesak I, Libik M, Karpinska B, et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses[J]. Acta Biochimica Polonica, 2007, 54(1):39-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e679bf68313ed39ddda8e9fbcd11eb10 |
[16] |
Foyer C H, Noctor G. Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005, 17(7):1866-1875. doi: 10.1105/tpc.105.033589 |
[17] |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant SCI, 2004, 9(10):490-498. doi: 10.1016/j.tplants.2004.08.009 |
[18] |
Li B, Duan H, Li J, et al. Global identification of miRNAs and targets in Populus euphratica under salt stress[J]. Plant Molecular Biology, 2013, 81(6):525-539. doi: 10.1007/s11103-013-0010-y |
[19] |
Ma J, Lu J, Xu J, et al. Genome-wide identification of WRKY genes in the desert poplar Populus euphratica and adaptive evolution of the genes in response to salt stress[J]. Evolutionary Bioinformatics, 2015, 11(Suppl.1):47-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003931352 |
[20] |
Lu X, Dun H, Lian C, et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiol Biochem, 2017, 115:418-438. doi: 10.1016/j.plaphy.2017.04.009 |
[21] |
Li B, Qin Y, Duan H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experiment Botany, 2011, 62(11):3765-3779. doi: 10.1093/jxb/err051 |
[22] |
Lingard M J, Trelease R N. Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, duplication or aggregation[J]. Journal of Cell Science, 2006, 119(9):1961-1972. doi: 10.1242/jcs.02904 |
[23] |
Bartel B, Reumann S. Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics[J]. Current Opinion in Plant Biology, 2016, 34:17-26. doi: 10.1016/j.pbi.2016.07.008 |
[24] |
张影, 练从龙, 段卉, 等.胡杨bZIP转录因子PebZIP26和PebZIP33基因的克隆及功能分析[J].北京林业大学学报, 2017, 39(7):18-30. doi: 10.13332/j.1000-1522.20170109
Zhang Y, Lian C L, Duan H, et al. Cloning and functional analysis of PebZIP26 and PebZIP33 transcription factors from Populus euphratica[J]. Journal of Beijing Forestry University, 2017, 39(7):18-30. doi: 10.13332/j.1000-1522.20170109 |
[25] |
Wang H, Li L, Tang S, et al. Evaluation of appropriate reference genes for reverse transcription-quantitative PCR studies in different tissues of a desert Poplar via comparision of different algorithms[J]. International Journal of Molecular Sciences, 2015, 16(9):20468-22049. doi: 10.3390/ijms160920468 |
[26] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods, 2001, 25(4):402-408. doi: 10.1006/meth.2001.1262 |
[27] |
Luo P, Shen Y, Jin S, et al. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling[J]. Plant Science, 2016, 245:35-49. doi: 10.1016/j.plantsci.2016.01.007 |
[28] |
康建宏, 吴宏亮, 黄灵丹.干旱预处理的玉米幼苗对逆境的交叉适应研究[J].干旱地区农业研究, 2008, 26(6):143-148. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200806028
Kang J H, Wu H L, Huang L D. Cross adaptation of stress on maize seedings under drought induced[J]. Agricultural Research in the Arid Areas, 2008, 26(6):143-148. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200806028 |
[29] |
Hayashi M, Nishimura M. Entering a new era of research on plant peroxisomes[J].Current Opinion in Plant Biology, 2003, 6(6):577-582. doi: 10.1016/j.pbi.2003.09.012 |
[30] |
Reumann S, Weber A P. Plant peroxisomes respire in the light: some gaps of the photorespiratory C-2 cycle have become filled-others remain[J]. Biochim Biophys ACTA, 2006, 1763(12):1496-1510. doi: 10.1016/j.bbamcr.2006.09.008 |
[31] |
崔慧萍, 周薇, 郭长虹.植物过氧化物酶体在活性氧信号网络中的作用[J].中国生物化学与分子生物学报, 2017, 33(3):220-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswhxyfzswxb201703003
Cui H P, Zhou W, Guo C H.The role of plant peroxisomes in ROS signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3):220-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswhxyfzswxb201703003 |
[32] |
Leterrier M, Corpas F J, Barroso J B, et al. Peroxisomal monodehydroascorbate reductase: genomic clone characterization and functional analysis under environmental stress conditions[J]. Plant Physiology, 2005, 138(4):2111-2122. doi: 10.1104/pp.105.066225 |
[33] |
肖国增, 滕珂, 李林洁, 等.盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究[J].草业学报, 2016, 25(9):74-82. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201609009
Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress[J].Acta Prataculturae Sinica, 2016, 25(9):74-82. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201609009 |
[34] |
刘凤歧, 刘杰淋, 朱瑞芬, 等.4种燕麦对NaCl胁迫的生理响应及耐盐性评价[J].草业学报, 2015, 24(1):183-189. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201501022
Liu F Q, Liu J L, Zhu R F, et al.Physiological responses and tolerance of four oat varieties to salt stress[J].Acta Prataculturae Sinica, 2015, 24(1):183-189. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201501022 |
[35] |
杨传宝, 孙超, 李善文, 等.白杨派无性系苗期耐盐性综合评价及筛选[J].北京林业大学学报, 2017, 39(10):24-32. doi: 10.13332/j.1000-1522.20170323
Yang C B, Sun C, Li S W, et al. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10):24-32. doi: 10.13332/j.1000-1522.20170323 |
[36] |
Yang Y, Shi R, Wei X, et al. Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr.[J]. Plant Cell Tissue & Organ Culture, 2010, 102(3):387-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a13dd047875201c156bba4feb893014d |