[1] Smith W K, Vogelmann T C, Delucia E H, et al. Leaf form and photosynthesis[J]. BioScience, 1997, 47(11): 785−793. doi:  10.2307/1313100
[2] Wilson P J, Thompson K E N, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 1999, 143(1): 155−162. doi:  10.1046/j.1469-8137.1999.00427.x
[3] 董莉莉, 刘世荣, 史作民, 等. 中国南北样带上栲属树种叶功能性状与环境因子的关系[J]. 林业科学研究, 2009, 22(4):463−469. doi:  10.3321/j.issn:1001-1498.2009.04.001

Dong L L, Liu S R, Shi Z M, et al. Relationships between leaf traits of Castanopsis species and the environmental factors in the North-South transect of eastern China[J]. Forest Research, 2009, 22(4): 463−469. doi:  10.3321/j.issn:1001-1498.2009.04.001
[4] 连政华, 张春雨, 程艳霞, 等. 中国东北部典型树种功能性状地理变异规律研究[J]. 北京林业大学学报, 2019, 41(3):42−48.

Lian Z H, Zhang C Y, Cheng Y X, et al. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42−48.
[5] 曹科, 饶米德, 余建中, 等. 古田山木本植物功能性状的系统发育信号及其对群落结构的影响[J]. 生物多样性, 2013, 21(5):564−571.

Cao K, Rao M D, Yu J Z, et al. The phylogenetic signal of functional traits and their effects on community structure in an evergreen broad-leaved forest[J]. Biodiversity Science, 2013, 21(5): 564−571.
[6] 邓蕾, 王鸿喆, 上官周平, 等. 水蚀风蚀交错区柠条锦鸡儿叶片比叶面积和营养元素变化动态[J]. 生态学报, 2010, 30(18):4889−4897.

Deng L, Wang H Z, Shangguan Z P, et al. Variations of specific leaf area and nutrients of Chinese caragana in the Loess Plateau region suffering both wind and water erosions[J]. Acta Ecologica Sinica, 2010, 30(18): 4889−4897.
[7] 徐朝斌, 钟全林, 程栋梁, 等. 基于地理种源的刨花楠苗木比叶面积与叶片化学计量学关系[J]. 生态学报, 2015, 35(19):6507−6515.

Xu C B, Zhong Q L, Cheng D L, et al. Variation in relationships between SLA and leaf C, N, P stoichiometry in Machilus pauhoi among locations[J]. Acta Ecologica Sinica, 2015, 35(19): 6507−6515.
[8] 杨美华. 长白山的气候特征及北坡垂直气候带[J]. 气象学报, 1981, 39(3):311−319.

Yang M H. The climatic features of Changbaishan and its vertical climate zone on the northern slop[J]. Acta Meteorologica Sinica, 1981, 39(3): 311−319.
[9] Kembel S W, Cahill J F. Independent evolution of leaf and root traits within and among temperate grassland plant communities [J/OL]. PLoS one, 2011, 6(6): e19992 [2018−11−20] (2011−06−08). https://doi.org/10.1371/journal.pone.0019992.
[10] Zhang M, Ji C, Zhu J, et al. Comparison of wood physical and mechanical traits between major gymnosperm and angiosperm tree species in China[J]. Wood Science and Technology, 2017, 51(6): 1405−1419. doi:  10.1007/s00226-017-0954-1
[11] Webb C O, Donoghue M J. Phylomatic: tree assembly for applied phylogenetics[J]. Molecular Ecology Notes, 2005, 5(1): 181−183. doi:  10.1111/j.1471-8286.2004.00829.x
[12] Zhang S B, Slik J W F, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment[J]. Global Ecology and Biogeography, 2011, 20(2): 241−250. doi:  10.1111/j.1466-8238.2010.00582.x
[13] Kress W J, Erickson D L, Jones F A, et al. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama[J]. Proceedings of the National Academy of Sciences, 2009, 106(44): 18621−18626. doi:  10.1073/pnas.0909820106
[14] Group C P W, Hollingsworth P M, Forrest L L, et al. A DNA barcode for land plants[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 12794−12797. doi:  10.1073/pnas.0905845106
[15] 裴男才, 张金龙, 米湘成, 等. 植物DNA条形码促进系统发育群落生态学发展[J]. 生物多样性, 2011, 19(3):284−294.

Pei N C, Zhang J L, Mi X C, et al. Plant DNA barcodes promote the development of phylogenetic community ecology[J]. Biodiversity Science, 2011, 19(3): 284−294.
[16] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi:  10.1073/pnas.0403588101
[17] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi:  10.1111/j.1461-0248.2007.01113.x
[18] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi:  10.1046/j.0269-8463.2001.00542.x
[19] 么旭阳, 胡耀升, 刘艳红. 长白山阔叶红松林不同群落类型的植物功能性状与功能多样性[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3):77−84.

Yao X Y, Hu Y S, Liu Y H. Plant functional traits and functional diversities of different communities in broad-leaved Korean pine forests in the Changbai Mountain[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2014, 42(3): 77−84.
[20] 杨蕾, 孙晗, 樊艳文, 等. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12):1228−1238. doi:  10.17521/cjpe.2017.0115

Yang L, Sun H, Fan Y W, et al. Changes in leaf nitrogen and phosphorus stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, China[J]. Chinese Journal of Plant Ecology, 2017, 41(12): 1228−1238. doi:  10.17521/cjpe.2017.0115
[21] 姜沛沛, 曹扬, 陈云明. 陕西省森林群落乔灌草叶片和凋落物C、N、P生态化学计量特征[J]. 应用生态学报, 2016, 27(2):365−372.

Jiang P P, Cao Y, Chen Y M. C, N, P stoichiometric characteristics of tree, shrub, herb leaves and litter in forest community of Shaanxi Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 365−372.
[22] 戴志聪, 杜道林, 司春灿, 等. 用扫描仪及Image J软件精确测量叶片形态数量特征的方法[J]. 广西植物, 2009, 29(3):342−347. doi:  10.3969/j.issn.1000-3142.2009.03.013

Dai Z Q, Du D L, Si C C, et al. A method to exactly measure the morphological quantity of leaf using Scanner and Image J Software[J]. Guihaia, 2009, 29(3): 342−347. doi:  10.3969/j.issn.1000-3142.2009.03.013
[23] 王维华. 红松针叶面积的测定[J]. 辽宁林业科技, 1985(2):22−24.

Wang W H. Methods to measure the leaf area of Pinus koraiensis[J]. Liaoning Forestry Science and Technology, 1985(2): 22−24.
[24] 方精云. 地理要素对我国温度分布影响的数量评价[J]. 生态学报, 1992, 12(2):97−104. doi:  10.3321/j.issn:1000-0933.1992.02.006

Fang J Y. Study on the geographic elements affecting temperature distribution in China[J]. Acta Ecologica Sinica, 1992, 12(2): 97−104. doi:  10.3321/j.issn:1000-0933.1992.02.006
[25] Wang X P, Fang J Y, Zhu B. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255(12): 4007−4020. doi:  10.1016/j.foreco.2008.03.055
[26] Barrufol M, Schmid B, Bruelheide H, et al. Biodiversity promotes tree growth during succession in subtropical forest[J/OL]. PLoS one, 2013, 8(11): e81246 (2013−09−26) [2018−11−02]. https://doi.org/10.1371/journal.pone.0081246.
[27] Farris J S, Källersjö M, Kluge A G, et al. Testing significance of incongruence[J]. Cladistics, 1994, 10(3): 315−319. doi:  10.1111/j.1096-0031.1994.tb00181.x
[28] Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268−274.
[29] Sanderson M J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock[J]. Bioinformatics, 2003, 19(2): 301−302. doi:  10.1093/bioinformatics/19.2.301
[30] He J S, Wang X P, Flynn D F B, et al. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence[J]. Ecology, 2009, 90(10): 2779−2791. doi:  10.1890/08-1126.1
[31] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi:  10.1093/molbev/msw054
[32] Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26(11): 1463−1464. doi:  10.1093/bioinformatics/btq166
[33] Sun H, Wang X P, Fan Y W, et al. Effects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China[J/OL]. Scientific Reports, 2017, 7: 43769, https://doi.org/10.1038/srep43769.
[34] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi:  10.1038/nature02403
[35] Wright I J, Westoby M. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology[J]. New Phytologist, 2002, 155(3): 403−416. doi:  10.1046/j.1469-8137.2002.00479.x
[36] Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: Global convergence in plant functioning[J]. Proceedings of the National Academy of Sciences, 1997, 94(25): 13730−13734. doi:  10.1073/pnas.94.25.13730
[37] Milla R, Reich P B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude[J]. Annals of Botany, 2011, 107(3): 455−465. doi:  10.1093/aob/mcq261
[38] 房帅, 原作强, 蔺菲, 等. 长白山阔叶红松林木本植物系统发育与功能性状结构[J]. 科学通报, 2014, 59(24):2342−2348. doi:  10.1360/N972014-00291

Fang S, Yuan Z Q, Lin F, et al. Functional and phylogenetic structures of woody plants in broad-leaved Korean pine mixed forest in Changbai Mountains, Jilin, China[J]. Chinese Science Bulletin, 2014, 59(24): 2342−2348. doi:  10.1360/N972014-00291
[39] Jefferson L V, Pennacchio M. The impact of shade on establishment of shrubs adapted to the high light irradiation of semi-arid environments[J]. Journal of Arid Environments, 2005, 63(4): 706−716. doi:  10.1016/j.jaridenv.2005.04.004
[40] 田杰, 王庆伟, 于大炮, 等. 长白山北坡气温的垂直变化[J]. 干旱区资源与环境, 2013, 27(4):65−69.

Tian J, Wang Q W, Yu D P, et al. Air temperature variation along altitudinal gradient on the northern slope of Mt. Changbai, China[J]. Journal of Arid Land Resources and Environment, 2013, 27(4): 65−69.
[41] Treml V, Hejda T, Kašpar J. Differences in growth between shrubs and trees: How does the stature of woody plants influence their ability to thrive in cold regions?[J]. Agricultural and Forest Meteorology, 2019, 271: 54−63. doi:  10.1016/j.agrformet.2019.02.036
[42] Kergunteuil A, Descombes P, Glauser G, et al. Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach[J]. Oecologia, 2018, 187(2): 561−571. doi:  10.1007/s00442-018-4162-y
[43] Poorter H, De Jong R O B. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity[J]. New Phytologist, 1999, 143(1): 163−176. doi:  10.1046/j.1469-8137.1999.00428.x
[44] Hoch G, Popp M, Körner C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J]. Oikos, 2002, 98(3): 361−374. doi:  10.1034/j.1600-0706.2002.980301.x
[45] Hoffmann W A, Franco A C, Moreira M Z, et al. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees[J]. Functional Ecology, 2005, 19(6): 932−940. doi:  10.1111/j.1365-2435.2005.01045.x
[46] Lambers H, Chapin Ⅲ F S, Pons T L. Plant Physiological Ecology[M]. New York: Springer Science & Business Media, 2008.
[47] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2006.

Li H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2006.
[48] Yang S Y, Huang T K, Kuo H F, et al. Role of vacuoles in phosphorus storage and remobilization[J]. Journal of Experimental Botany, 2017, 68(12): 3045−3055.
[49] Han W X, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8): 788−796. doi:  10.1111/j.1461-0248.2011.01641.x
[50] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2−6. doi:  10.3773/j.issn.1005-264x.2010.01.002

He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi:  10.3773/j.issn.1005-264x.2010.01.002