[1] Wiens J J. Climate-related local extinctions are already widespread among plant and animal species[J/OL]. PLoS Biology, 2016, 14(12), e2001104 (2016−09−08) [2018−08−14]. http://doi.org/10.1371/journal.pbio.2001104.
[2] Oliver T H, Marshall H H, Morecroft M D, et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies[J]. Nature Climate Change, 2015, 5(10): 941−945. doi:  10.1038/nclimate2746
[3] Ren H, Zhang Q M, Lu H F. Wild plant species with extremely small populations require conservation and reintroduction in China[J]. Royal Swedish Academy of Sciences, 2012, 41: 913−917.
[4] 臧润国, 董鸣, 李俊清, 等. 典型极小种群野生植物保护与恢复技术研究[J]. 生态学报, 2016, 36(22):7130−7135.

Zang R G, Dong M, Li J Q, et al. Conservation and restoration for typical critically endangered wild plants with extremely small population[J]. Acta Ecologica Sinica, 2016, 36(22): 7130−7135.
[5] Ren H, Jian S G, Liu H X, et al. Advances in the reintroduction of rare and endangered wild plant species[J]. Science China Life Sciences, 2014, 57(6): 603−609. doi:  10.1007/s11427-014-4658-6
[6] 周翔, 高江云. 珍稀濒危植物的回归:理论和实践[J]. 生物多样性, 2011, 19(1):97−105. doi:  10.3724/SP.J.1003.2011.09101

Zhou X, Gao J Y. The reintroduction of rare and endangered plants: theory and practice[J]. Biodiversity Science, 2011, 19(1): 97−105. doi:  10.3724/SP.J.1003.2011.09101
[7] Godefroid S, Piazza C, Rossi G, et al. How successful are plant species reintroductions?[J]. Biological Conservation, 2011, 144(2): 672−682. doi:  10.1016/j.biocon.2010.10.003
[8] Albrecht M A, Long Q G. Habitat suitability and herbivores determine reintroduction success of an endangered legume[J]. Plant Diversity, 2019, 41(2): 109−117. doi:  10.1016/j.pld.2018.09.004
[9] Erin J Q, James R K, Kealoha K, et al. Mapping habitat suitability for at-risk plant species and its implications for restoration and reintroduction[J]. Ecological Applications: A Publication of the Ecological Society of America, 2014, 24(2): 385−395. doi:  10.1890/13-0775.1
[10] 汪越, 易慧琳, 邵玲, 等. 紫背天葵(<italic>Begonia fimbristipula</italic> Hance)回归植株存活及叶片生物学特性研究[J]. 生态科学, 2017, 36(2):32−41.

Wang Y, Li H L, Shao L, et al. Survival and eco-biological characteristics of <italic>Begonia fimbristipula</italic> Hance in the process of reintroduction[J]. Ecological Science, 2017, 36(2): 32−41.
[11] 李景秀, 崔卫华, 胡枭剑, 等. 濒危植物古林箐秋海棠的扦插繁殖及回归引种初探[J]. 广西植物, 2018, 38(7):851−858. doi:  10.11931/guihaia.gxzw201705019

Li J X, Cui W H, Hu X J, et al. Cutting propagation and regression planting of endangered plant <italic>Begonia gulinqingensis</italic>[J]. Guihaia, 2018, 38(7): 851−858. doi:  10.11931/guihaia.gxzw201705019
[12] 谭美, 杨志玲, 杨旭, 等. 厚朴野生资源的野外回归植株苗期适应性评价[J]. 林业科学研究, 2019, 32(1):125−132.

Tan M, Yang Z L, Yang X, et al. Adaptability evaluation of wild <italic>Houpoëa officinalis</italic> seedling in the process of reintroduction[J]. Forest Research, 2019, 32(1): 125−132.
[13] 冯欣欣, 余金昌, 袁志永, 等. 国家Ⅱ级保护植物竹叶兰的迁地保护与野外回归研究[J]. 中国园艺文摘, 2017, 33(3):12−14. doi:  10.3969/j.issn.1672-0873.2017.03.005

Feng X X, Yu J C, Yuan Z Y, et al. The ex-situ conservation and reintroduction of the national second-class protection plant <italic>Arundina graminifolia</italic>[J]. Chinese Horticulture Abstracts, 2017, 33(3): 12−14. doi:  10.3969/j.issn.1672-0873.2017.03.005
[14] 陈芳清, 谢宗强, 熊高明, 等. 三峡濒危植物疏花水柏枝的回归引种和种群重建[J]. 生态学报, 2005, 25(7):1813−1817.

Chen F Q, Xie Z Q, Xiong G M, et al. Reintroduction and population reconstruction of an endangered plant <italic>Myricaria laxiflora</italic> in the Three Gorges Reservoir Area, China[J]. Acta Ecologica Sinica, 2005, 25(7): 1813−1817.
[15] 简尊吉, 马凡强, 郭泉水, 等. 回归崖柏苗木存活和生长对海拔梯度的响应[J]. 林业科学, 2017, 53(11):1−11. doi:  10.11707/j.1001-7488.20171101

Jian Z J, Ma F Q, Guo Q S, et al. Responses of survival and growth of <italic>Thuja sutchuenensis</italic> reintroduction seedlings to altitude gradient[J]. Scientia Silave Sinicae, 2017, 53(11): 1−11. doi:  10.11707/j.1001-7488.20171101
[16] 周志强, 刘彤, 胡林林, 等. 穆棱东北红豆杉年轮—气候关系及其濒危机制[J]. 生态学报, 2010, 30(9):2304−2310.

Zhou Z Q, Liu T, Hu L L, et al. Tree ring-climate response and endangered mechanism deliberation of Japanese yew (<italic>Taxus cuspidata</italic>) in Muling Nature Reserve[J]. Acta Ecologica Sinica, 2010, 30(9): 2304−2310.
[17] 刘彤. 天然东北红豆杉种群生态学研究[D]. 哈尔滨: 东北林业大学, 2007.

Liu T. Population ecology of natural Japanese yew[D]. Harbin: Northeast Forestry University, 2007.
[18] 李云灵.东北红豆杉种间关系研究[D].哈尔滨: 东北林业大学, 2008.

Li Y L. Interspecific relationship of the Taxus cuspidata[D]. Harbin: Northeast Forestry University, 2008.
[19] 周志强, 刘彤, 袁继连. 黑龙江穆棱天然东北红豆杉种群资源特征研究[J]. 植物生态学报, 2004, 28(4):476−482. doi:  10.3321/j.issn:1005-264X.2004.04.005

Zhou Z Q, Liu T, Yuan J L. Population characteristics of yew(<italic>Taxus cuspidata</italic>) in the Muling Yew Nature Reserve, Heilongjiang Province[J]. Acta Phytoecologica Sinica, 2004, 28(4): 476−482. doi:  10.3321/j.issn:1005-264X.2004.04.005
[20] 陈杰, 龙婷, 杨蓝, 等. 东北红豆杉生境适宜性评价[J]. 北京林业大学学报, 2019, 41(4):51−59.

Chen J, Long T, Yang L, et al. Habitat suitability assessment of <italic>Taxus cuspidate</italic>[J]. Journal of Beijing Forestry University, 2019, 41(4): 51−59.
[21] 杨占, 张强, 卢元, 等. 辽宁省东北红豆杉天然种群特征研究[J]. 防护林科技, 2017(3):16−17.

Yang Z, Zhang Q, Lu Y, et al. Distribution and characteristics of wild natural <italic>Taxus cuspidata</italic> in Liaoning Province[J]. Protection Forest Science and Technology, 2017(3): 16−17.
[22] 刁云飞. 东北红豆杉−红松林群落结构与空间关联性研究[D].哈尔滨: 东北林业大学, 2015.

Diao Y F. Community structure and spatial correlation of a Taxus cuspidata-Pinus koraiehsis forest[D]. Harbin: Northeast Forestry University, 2015.
[23] 王兆东, 孙习华, 张荣哲. 东北红豆杉扦插繁殖技术研究[J]. 现代园林, 2007(12):82−83.

Wang Z D, Sun X H, Zhang R Z. Research on cottage propagation techniques of <italic>Taxus cuspidata</italic>[J]. Modern Landscape Architecture, 2007(12): 82−83.
[24] 马盈, 丰庆义, 杨凯. 东北红豆杉繁殖技术研究进展评述[J]. 林业勘查设计, 2013(1):62−64. doi:  10.3969/j.issn.1673-4505.2013.01.030

Ma Y, Feng Q Y, Yang K. Review on the research on propagation technique of <italic>Taxus cuspidata</italic>[J]. Forest Investigation Design, 2013(1): 62−64. doi:  10.3969/j.issn.1673-4505.2013.01.030
[25] 吴杰, 汤欢, 黄林芳, 等. 红豆杉属植物全球生态适宜性分析研究[J]. 药学学报, 2017, 52(7):1186−1195.

Wu J, Tang H, Huang L F, et al. Global ecological suitability analysis of <italic>Taxus</italic>[J]. Acta Pharmaceutica Sinica, 2017, 52(7): 1186−1195.
[26] 孔维尧, 孙权, 刘鑫鑫, 等. 基于红外相机监测的汪清自然保护区东北豹种群动态[J]. 林业科学, 2019, 55(5):188−196. doi:  10.11707/j.1001-7488.20190521

Sun W Y, Sun Q, Liu X X, et al. Population dynamic of dar eastern leopard (<italic>Panthera pardus orientalis</italic>) in Wangqing Nature Reserve based on infrared camera monitoring[J]. Scientia Silave Sinicae, 2019, 55(5): 188−196. doi:  10.11707/j.1001-7488.20190521
[27] 国家林业局. 中华人民共和国林业行业标准: 森林土壤分析方法[S]. 北京: 中国标准出版社, 1999.

State Forestry Administration. Forestry industry standard of the People ’s Republic of China: forest soil analysis method[S]. Beijing: China Standard Press, 1999.
[28] 余敏, 周志勇, 康峰峰, 等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5):373−383. doi:  10.3724/SP.J.1258.2013.00373

Yu M, Zhou Z Y, Kang F F, et al. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 373−383. doi:  10.3724/SP.J.1258.2013.00373
[29] 周绍春, 张明海, 尹远新, 等. 黑龙江完达山地区狍子冬季生境选择[J]. 北京林业大学学报, 2010, 32(3):122−127.

Zhou S C, Zhang M H, Yin Y X, et al. Habitat selection of roe deer (<italic>Capreolus capreolus</italic>) in winter in the eastern Wandashan Mountains, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2010, 32(3): 122−127.
[30] 刘彤, 祝佳媛, 李鹏, 等. 秋冬季自然降温过程中东北红豆杉幼苗的生理生化特性[J]. 北京林业大学学报, 2013, 35(2):51−56.

Liu T, Zhu J Y, Li P, et al. Physiological and biochemical characteristics of Japanese yew seedlings as natural temperature falling in autumn and winter[J]. Journal of Beijing Forestry University, 2013, 35(2): 51−56.
[31] 张继武. 东北红豆杉幼苗越冬过程中理化特性研究[J]. 黑龙江科技信息, 2013(12):261.

Zhang J W. Physical and chemical characteristics of <italic>Taxus cuspidata</italic> seedlings during overwintering[J]. Heilongjiang Scientific and Technological Information, 2013(12): 261.
[32] 李俊清. 森林生态学[M]. 北京: 高等教育出版社, 2010.

Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2010.
[33] 徐博超, 周志强, 李威, 等. 东北红豆杉幼苗对不同水分条件的光合和生理响应[J]. 北京林业大学学, 2012, 34(4):73−78.

Xu B C, Zhou Z Q, Li W, et al. Physiological and photosynthetic response to different water conditions of <italic>Taxus cuspidate</italic> seedings[J]. Journal of Beijing Forestry University, 2012, 34(4): 73−78.
[34] 刘彤, 崔海娇, 吴淑杰, 等. 东北红豆杉幼苗光合和荧光特性对不同光照条件的响应[J]. 北京林业大学学报, 2013, 35(3):65−70.

Liu T, Cui H J, Wu S J, et al. Response of photosynthetic and fluorescence characteristics of Japanese yew seedlings to different light conditions[J]. Journal of Beijing Forestry University, 2013, 35(3): 65−70.
[35] 张雨鉴, 王克勤, 宋娅丽, 等. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2019, 28(1):73−82.

Zhang Y J, Wang K Q, Song Y L, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in subalpine of middle Yunnan Province[J]. Ecology and Environmental Sciences, 2019, 28(1): 73−82.
[36] 干怀新. 一种新型造林地幼苗保护装置: CN209435912U[P]. 2019−09−27.

Gan H X. The utility model relates to a new seedling protection device in constructed woodland: CN209435912U[P]. 2019−09−27.