[1] Adrees M, Ali S, Rizwan M, et al. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review[J]. Ecotoxicology and Environmental Safety, 2015, 119(9): 186−197.
[2] 姜礅, 王月月, 严善春. 银中杨各部位对Cd、Zn、Pb的富集特性[J]. 北京林业大学学报, 2018, 40(1):83−88.

Jiang D, Wang Y Y, Yan S C. Accumulation characteristics in all parts of Populous alba ‘Berolinensis’ to cadmium, zinc, and lead[J]. Journal of Beijing Forestry University, 2018, 40(1): 83−88.
[3] Jia X L, Hu B F, Marchant B P, et al. A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the Yangtze Delta, China[J]. Environmental Pollution, 2019, 250(4): 601−609.
[4] 邹建美, 孙江, 戴伟, 等. 北京近郊耕作土壤重金属状况评价分析[J]. 北京林业大学学报, 2013, 35(1):132−138.

Zou J M, Sun J, Dai W, et al. Evaluation and analysis of heavy metals in cultivated soils in the suburbs of Beijing[J]. Journal of Beijing Forestry University, 2013, 35(1): 132−138.
[5] Perlatti F, Otero X L, Macias F, et al. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes[J]. Science of the Total Environment, 2014, 500: 91−102.
[6] 陈欣园, 仵彦卿. 不同化学淋洗剂对复合重金属污染土壤的修复机理[J]. 环境工程学报, 2018, 12(10):2845−2854. doi:  10.12030/j.cjee.201804192

Chen X Y, Wu Y Q. Remediation mechanism of multi-heavy metal contaminated soil by using different chemical washing agents[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2845−2854. doi:  10.12030/j.cjee.201804192
[7] Atafar Z, Mesdaghinia A, Nouri J, et al. Effect of fertilizer application on soil heavy metal concentration[J]. Environmental Monitoring & Assessment, 2010, 160(1): 83−89.
[8] Zahran S, Lverson T, Shawn P, et al. The effect of leaded aviation gasoline on blood lead in children[J]. Journal of the Association of Environmental and Resource Economists, 2017, 2(4): 575−610.
[9] Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science & Pollution Research, 2016, 23(13): 13128−13136.
[10] 王琦, 李芳柏, 黄小追, 等. 一种基于风险管控的稻田土壤重金属污染分级方法[J]. 生态环境学报, 2018, 27(12):2321−2328.

Wang Q, Li F B, Huang X Z, et al. A classification approach of heavy metal pollution of paddy soil based on risk management[J]. Ecology and Environmental Sciences, 2018, 27(12): 2321−2328.
[11] Zia M H, Codling E E, Scheckel K G, et al. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: a review[J]. Environmental Pollution, 2011, 159(10): 2320−2327. doi:  10.1016/j.envpol.2011.04.043
[12] 杨文杰, 姚瑞华, 孙宏亮, 等. 添加剂对土壤镉的形态及油菜生长的影响[J]. 环境科学与技术, 2018, 41(增刊 2):9−13.

Yang W J. Yao R H, Sun H L, et al. Effects of application of soil amendments in cadmium contaminated soil on rape growth and chemical form of cadmium[J]. Environmental Science & Technology, 2018, 41(Suppl. 2): 9−13.
[13] 孙丽娟, 秦秦, 宋科, 等. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 2018, 27(7):1377−1386.

Sun L Q, Qin Q, Song K, et al. The remediation and safety utilization techniques for Cd contaminated farmland soil: a review[J]. Ecology and Environmental Sciences, 2018, 27(7): 1377−1386.
[14] Rehman M Z U, Rizwan M, Hussain A, et al. Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil[J]. Environmental Pollution, 2018, 241(10): 557−565.
[15] Mench M, Lepp N, Bert V, et al. Successes and limitations of phyto-technologies at field scale: outcomes, assessment and outlook from COST Action 859[J]. Journal of Soils and Sediments, 2010, 10(6): 1039−1070. doi:  10.1007/s11368-010-0190-x
[16] 黄川, 李柳, 黄珊, 等. 重金属污染土壤的草酸和EDTA混合淋洗研究[J]. 环境工程学报, 2014, 8(8):3480−3486.

Huang C, Li L, Huang S, et al. Study on mixture of OX and EDTA leaching heavy metals contaminated soil[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3480−3486.
[17] 周东美, 仓龙, 邓昌芬. 过氧化氢对铬在黄棕壤中电动过程的影响[J]. 土壤学报, 2005, 42(1):59−63. doi:  10.3321/j.issn:0564-3929.2005.01.009

Zhou D M, Cang L, Deng C F. Electro kinetic processes of chromium in yellow brown soil as affected by hydrogen peroxide[J]. Acta Pedological Sinica, 2005, 42(1): 59−63. doi:  10.3321/j.issn:0564-3929.2005.01.009
[18] Xiao W, Wang H, Li T, et al. Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredia associated with carbendazim-degrading bacterial strains[J]. Environmental Science and Pollution Research, 2013, 20(1):380−389.
[19] 李方洲, 滕玉婷, 张亚平, 等. 土壤重金属修复植物处置技术研究现状与展望[J]. 环境科学与技术, 2018, 41(增刊 2):213−220.

Li F Z, Teng Y T, Zhang Y P, et al. Research progress of disposal technology for heavy metal hyperaccumulator plants[J]. Environmental Science & Technology, 2018, 41(Suppl. 2): 213−220.
[20] Pinto A P, Varennes A D, Fonseca R, et al. Phytoremediation of soils contaminated with heavy metals: techniques and strategies[J]. Phytoremediation, 2014, 10: 133−155.
[21] Gaurav S, Diane P, Sikandar I M. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects[J]. Reviews of Environmental Contamination and Toxicology, 2019, 249(2): 71−131.
[22] Michel M, Schwitzguébel J, Schroeder P, et al. Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety[J]. Environmental Science and Pollution Research, 2009, 16(7): 876−900.
[23] 曾鹏, 郭朝晖, 肖细元, 等. 芦竹和木本植物间种修复重金属污染土壤[J]. 环境科学, 2018, 39(11):5207−5216.

Zeng P, Guo C H, Xiao X Y, et al. Intercropping arundo donax with woody plants to eemediate heavy metal-contaminated soil[J]. Environmental Science, 2018, 39(11): 5207−5216.
[24] Prince W S, Senthilkumar P, Subburam V. Mulberry-silkworm food chain : a templet to assess heavy metal mobility in terrestrial ecosystems[J]. Environmental Monitoring and Assessment, 2001, 69(3): 231−238. doi:  10.1023/A:1010715606097
[25] Zhao S, Shang X, Duo L. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4[J]. Environmental Science and Pollution Research, 2013, 20(2): 967−975. doi:  10.1007/s11356-012-0992-z
[26] Si L, Peng X, Zhou J. The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: a new method for urban sludge disposal[J]. Environmental Science and Pollution Research, 2019, 26(2): 1379−1393. doi:  10.1007/s11356-018-3635-1
[27] Zhou L, Zhao Y, Wang S. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential[J]. Environmental Science and Pollution Research, 2015, 22(22): 18031−18039. doi:  10.1007/s11356-015-5011-8
[28] 廖希雯, 陈杰, 范天凤, 等. 地质聚合物固化稳定化重金属复合污染土壤[J]. 环境工程学报, 2018, 12(7):2056−2065. doi:  10.12030/j.cjee.201712077

Liao X W, Chen J, Fan T F, et al. Soil of heavy metal composite pollution by geological polymer stabilization[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2056−2065. doi:  10.12030/j.cjee.201712077
[29] Ma J F, Yamaji N, Mitani N, et al. Transporters of arenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences, 2008, 105(29): 9931−9935. doi:  10.1073/pnas.0802361105
[30] 李舒琦, 高卓, 臧飞, 等. 外源Cd在施污黄土-小麦系统中的富集迁移规律[J]. 干旱区资源与环境, 2017, 31(12):123−128.

Li S Q, Gao Z, Zang F, et al. Enrichment and migration regularity of exogenous Cd in the applying sludge loess-wheat system[J]. Journal of Arid Land Resources and Environment, 2017, 31(12): 123−128.
[31] 王波, 黄攀, 吕德雅, 等. 铅、镉对南荻种子萌发和幼苗生长的影响[J]. 生态环境学报, 2018, 27(9):1768−1773.

Wang B, Huang P, Lü D Y, et al. Effects of Pb and Cd on the seed germination and seedling growth of Triarrhena lutarioriparia[J]. Ecology and Environmental Sciences, 2018, 27(9): 1768−1773.
[32] 邹文桐. 铅镉复合胁迫对芥菜种子萌发、幼苗生长及光合色素含量的影响[J]. 种子, 2013, 32(3):41−45. doi:  10.3969/j.issn.1001-4705.2013.03.012

Zou W T. Effects of combined lead and cadmium on seed germination, seedling growth and leaf photosynthetic pigment contents of Brassica juncea[J]. Seed, 2013, 32(3): 41−45. doi:  10.3969/j.issn.1001-4705.2013.03.012
[33] 葛成军, 陈秋波, 俞花美, 等. Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应[J]. 热带作物学报, 2008, 29(5):567−571. doi:  10.3969/j.issn.1000-2561.2008.05.007

Ge C J, Chen Q B, Yu H M, et al. Effect of Cd on germination and inhibition of root elongation of tropical forage plants[J]. Chinese Journal of Tropical Crops, 2008, 29(5): 567−571. doi:  10.3969/j.issn.1000-2561.2008.05.007
[34] 冯鹏, 孙力, 申晓慧, 等. 多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究[J]. 草业学报, 2016, 25(1):153−162.

Feng P, Sun L, Shen X H, et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses[J]. Acta Prataculturae Sinica, 2016, 25(1): 153−162.
[35] Wang L Y, Zheng S Y. Effect of cadmium, lead and their combined pollution on seed germination of wheat[J]. Journal of Triticeae Crops, 2009, 29(1): 146−148.
[36] Saraswat S, Rai J P N. Phytoextraction potential of six plant species grown in multimetal contaminated soil[J]. Chemistry and Ecology, 2009, 25(1): 1−11. doi:  10.1080/02757540802657185
[37] 黄仁志, 李一平, 蒋勇兵, 等. 镉铅复合胁迫对桑苗生长与桑叶重金属含量的影响[J]. 蚕业科学, 2018, 44(5):665−671.

Huang R Z, Li Y P, Jiang Y B, et al. Effect of cadmium and lead combined stress on growth of mulberry saplings and contents of heavy metal in mulberry leaf[J]. Science of Sericulture, 2018, 44(5): 665−671.
[38] 徐学华, 黄大庄, 王连芳, 等. 土壤铅、镉胁迫对红瑞木生长及生理生化特性的影响[J]. 水土保持学报, 2009, 23(1):213−216. doi:  10.3321/j.issn:1009-2242.2009.01.045

Xu X H, Huang D Z, Wang L F, et al. Effects of Pb, Cd stress in soil on the growth and physiological and biochemical characteristics of Swida alba[J]. Journal of Soil and Water Conservation, 2009, 23(1): 213−216. doi:  10.3321/j.issn:1009-2242.2009.01.045
[39] Hauck M, Paul A, Gross S. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus[J]. Environmental and Experimental Botany, 2003, 49(2): 181−191. doi:  10.1016/S0098-8472(02)00069-2
[40] Pietrini F, Iori V, Cheremisina A, et al. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content[J]. Environmental Science and Pollution Research, 2015, 22(1): 482−494. doi:  10.1007/s11356-014-3349-y
[41] Shu X, Yin L, Zhang Q, et al. Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L.[J]. Environmental Science and Pollution Research, 2012, 19(3): 893−902. doi:  10.1007/s11356-011-0625-y
[42] Yamaguchi H, Fukuoka H, Arao T. Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum[J]. Journal of Experimental Botany, 2010, 61(2): 423−437. doi:  10.1093/jxb/erp313
[43] 王新新, 吴亮, 朱生凤, 等. 镉胁迫对碱蓬种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2013, 32(2):238−243.

Wang X X, Wu L, Zhu S F, et al. Effects of cadmium stress on seed germination and seedling growth of Suaeda glauca[J]. Journal of Agro-Environment Science, 2013, 32(2): 238−243.
[44] Kuboi T, Noguchi A, Yazaki J. Relationship between tolerance and accumulation characteristics of cadmium in higher plants[J]. Plant and Soil, 1987, 104(2): 275−280. doi:  10.1007/BF02372542
[45] 陈朝明, 龚惠群, 王凯荣, 等. 桑−蚕系统中镉的吸收、累积与迁移[J]. 生态学报, 1999, 19(5):76−81.

Chen C M, Gong H Q, Wang K R, et al. The absorption, accumulation and migration of cadmium in the system of soil mulberry and silkworm[J]. Acta Ecological Sinica, 1999, 19(5): 76−81.
[46] Shukla P, Reddy R A, Ponnuvel K M, et al. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in mulberry (Morus alba L.) under different abiotic stresses[J]. Molecular Biology Reports, 2019, 46(2): 1809−1817. doi:  10.1007/s11033-019-04631-y
[47] 蒋诗梦, 颜新培, 龚昕, 等. 桑树品种间重金属镉的分布与富集规律研究[J]. 中国农学通报, 2016, 32(22):76−83. doi:  10.11924/j.issn.1000-6850.casb15120167

Jiang S M, Yan X P, Gong X, et al. Distribution and enrichment regularity of cadmium of different mulberry varieties[J]. Chinese Agricultural Science Bulletin, 2016, 32(22): 76−83. doi:  10.11924/j.issn.1000-6850.casb15120167