[1] Kerchev P, van der Meer T, Sujeeth N, et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants[J]. Biotechnology Advances, 2020, 40: 107503. doi:  10.1016/j.biotechadv.2019.107503.
[2] Przemysław Ł K, Dominika R, Eva I, et al. Influence of abiotic stress factors on the antioxidant properties and polyphenols profile composition of green barley (Hordeum vulgare L.)[J]. International Journal of Molecular Sciences, 2020, 21(2): 397.
[3] Yang X H, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants[J]. Plant Physiology, 2005, 138(4): 2299−2309. doi:  10.1104/pp.105.063164.
[4] Gao S, Han H, Feng H L, et al. Overexpression and suppression of violaxanthin de-epoxidase affects the sensitivity of photosystem II photoinhibition to high light and chilling stress in transgenic tobacco[J]. Journal of Integrative Plant Biology, 2010, 52(3): 332−339. doi:  10.1111/j.1744-7909.2010.00891.x.
[5] Lu Y. Identification and roles of photosystem II assembly, stability, and repair factors in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7: 168.
[6] Murata N, Allakhverdiev S I, Nishiyama Y. The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, a-tocopherol, non-photochemical quenching, and electron transport[J]. Biochimica et Biophysica Acta, 2012, 1817(8): 1127−1133. doi:  10.1016/j.bbabio.2012.02.020.
[7] Min L, Li Y Y, Hu Q, et al. Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton[J]. Plant Physiology, 2014, 164(3): 1293−1308. doi:  10.1104/pp.113.232314.
[8] Hirt H, Shinozaki K. Plant responses to abiotic stress[M]. Berlin: Springer Heidelberg, 2004: 4.
[9] Huang Y C, Niu C Y, Yang C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J]. Plant Physiology, 2016, 172(2): 1182−1199.
[10] Nover N, Bharti K, Döing P, et al. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3): 177−189.
[11] Zhang J, Jia H X, Li J B, et al. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar[J]. Scientific Reports, 2016, 6: 30050. doi:  10.1038/srep30050
[12] Guo M, Liu J H, Ma X, et al. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7: 114.
[13] Zupanska A K, LeFrois C, Ferl R J, et al. HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight[J]. International Journal of Molecular Sciences, 2019, 20(2): 390. doi:  10.3390/ijms20020390.
[14] Zang D, Wang J X, Zhang X, et al. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression[J]. Journal of Experimental Botany, 2019, 70(19): 5355−5374. doi:  10.1093/jxb/erz261.
[15] 姚文静. 杨树转录因子ERF76基因耐盐功能研究[D]. 哈尔滨: 东北林业大学, 2016.

Yao W J. Functional analysis of poplar transcription factor ERF76 gene on salt-stress tolerance[D]. Harbin: Northeast Forestry University, 2016.
[16] Tang M J, Xu L, Wang Y, et al. Genome-wide characterization and evolutionary analysis of heat shock transcription factors (HSFs) to reveal their potential role under abiotic stresses in radish (Raphanus sativus L.)[J]. BMC Genomics, 2019, 20(1): 1−13. doi:  10.1186/s12864-018-5379-1.
[17] Scharf K D, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor (Hsf) family: structure, function and evolution[J]. Biochimica et Biophysica Acta (BBA): Gene Regulatory Mechanisms, 2012, 1819(2): 104−119. doi:  10.1016/j.bbagrm.2011.10.002.
[18] Peteranderl R, Rabenstein M, Shin Y K, et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor[J]. Biochemistry, 1999, 38(12): 3559−3569. doi:  10.1021/bi981774j.
[19] 李春艳. AP1基因转化双单倍体小黑杨及其数字基因表达谱分析[D]. 哈尔滨: 东北林业大学, 2013.

Li C Y. Genetic transformation of AP1 gene in haploid Populus simonii × P. nigra and the DEGS analysis[D]. Harbin: Northeast Forestry University, 2013.
[20] 牛京萍, 刘轶, 由香玲. 小黑杨花粉植株的获得及遗传转化[J]. 福建林业科技, 2016, 43(4):13−16.

Niu J P, Liu Y, You X L. Induction and genetic transformation of pollen haploid plants of Populus simonii × P. nigra[J]. Fujian Forestry Science and Technology, 2016, 43(4): 13−16.
[21] Deutsch F, Kumlehn J, Ziegenhagen B, et al. Stable haploid poplar callus lines from immature pollen culture[J]. Physiologia Plantarum, 2004, 120(4): 613−622.
[22] 彭儒胜, 赵大根, 张兴芬, 等. 杨树单倍体育种及其影响因素[J]. 防护林科技, 2007, 25(6):59−60, 73. doi:  10.3969/j.issn.1005-5215.2007.06.023.

Peng R S, Zhao D G, Zhang X F, et al. Haploid breeding of poplar and its influencing factors[J]. Shelterbelt Technology, 2007, 25(6): 59−60, 73. doi:  10.3969/j.issn.1005-5215.2007.06.023.
[23] 王家玉, 赵威威. 银中杨、小黑杨树种的特性分析[J]. 科技风, 2011, 24(7):203. doi:  10.3969/j.issn.1671-7341.2011.07.179.

Wang J Y, Zhao W W. Characteristics of Populus alba × P. berolinensis and Populus simonii × P. nigra[J]. Technology Wind, 2011, 24(7): 203. doi:  10.3969/j.issn.1671-7341.2011.07.179.
[24] von Koskull-Döring P, Scharf K D, Nover L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10): 452−457. doi:  10.1016/j.tplants.2007.08.014.
[25] Liu B, Hu J J, Zhang J. Evolutionary divergence of duplicated Hsf genes in Populus[J]. Cells, 2019, 8(5): 438. doi:  10.3390/cells8050438.
[26] Akerfelt M, Morimoto R I, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan[J]. Nature Reviews Molecular Cell Biology, 2010, 11(8): 545−555. doi:  10.1038/nrm2938
[27] Fitter A H. Rapid changes in flowering time in British plants[J]. Science, 2002, 296: 1689−1691. doi:  10.1126/science.1071617.
[28] Alcazar R, Parker J E. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis[J]. Trends Plant Sci, 2011, 16(12): 666−675. doi:  10.1016/j.tplants.2011.09.001.
[29] Gray S B, Brady S M. Plant developmental responses to climate change[J]. Developmental Biology, 2016, 419(1): 64−77. doi:  10.1016/j.ydbio.2016.07.023.
[30] Zha Q, Xi X J, He Y, et al. Transcriptomic analysis of the leaves of two grapevine cultivars under high-temperature stress[J]. Scientia Horticulturae, 2020, 265: 109265.
[31] 李思达. 小黑杨PxbHLH01/02基因在逆境胁迫中的功能分析[D]. 哈尔滨: 东北林业大学, 2018.

Li S D. Functional analysis of PxbHLH01/02 genes in Populus simonii × P. nigra under stress condition[D]. Harbin: Northeast Forestry University, 2018.
[32] Charng Y Y, Liu H C, Liu N Y, et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiology, 2007, 143(1): 251−262. doi:  10.1104/pp.106.091322.
[33] Jung H S, Crisp P A, Estavillo G M, et al. Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light[J]. Proceedings of the National Academy of Sciences, 2013, 110(35): 14474−14479. doi:  10.1073/pnas.1311632110.
[34] 刘中原, 刘峥, 徐颖, 等. 白桦HSFA4转录因子的克隆及耐盐功能分析[J]. 林业科学, 2020, 56(5):69−79.

Liu Z Y, Liu Z, Xu Y, et al. Cloning and salt tolerance analysis of transcription factor HSFA4 from Betula platyphylla[J]. Forestry Science, 2020, 56(5): 69−79.
[35] Perez-Salamo I, Papdi C, Rigo G, et al. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6[J]. Plant Physiology, 2014, 165(1): 319−334. doi:  10.1104/pp.114.237891.
[36] Chauhan H, Khurana N, Agarwal P, et al. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment[J]. PLoS ONE, 2013, 8(11): e79577. doi:  10.1371/journal.pone.0079577.
[37] Bian X H, Li W, Niu C F, et al. A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis[J]. New Phytologist, 2020, 225(1): 268−283. doi:  10.1111/nph.16104.