[1] Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105−2110. doi:  10.1126/science.290.5499.2105
[2] Nuruzzaman M, Manimekalai R, Sharoni A M, et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene, 2010, 465(1−2): 30−44. doi:  10.1016/j.gene.2010.06.008
[3] Pinheiro G L, Marques C S, Costa M D B L, et al. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response[J]. Gene, 2009, 444(1−2): 10−23. doi:  10.1016/j.gene.2009.05.012
[4] Rushton P J, Bokowiec M T, Laudeman T W, et al. TOBFAC: the database of tobacco transcription factors[J/OL]. BMC Bioinformatics, 2008, 9(1): 53 [2019−07−15]. https://doi.org/10.1186/1471-2105-9-53.
[5] Zhang J, Huang G Q, Zou D, et al. The cotton(Gossypium hirsutum)NAC transcription factor(FSN1)as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers[J]. New Phytologist, 2018, 217(2): 625−640. doi:  10.1111/nph.14864
[6] Huang Q J, Wang Y, Li B, et al. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis[J/OL]. BMC Plant Biology, 2015, 15(1): 268 [2019−07−15]. https://doi.org/10.1186/s12870-015-0644-9.
[7] Tak H, Negi S, Ganapathi T R. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J]. Protoplasma, 2017, 254(2): 803−816. doi:  10.1007/s00709-016-0991-x
[8] Nakashima K, Tran L S P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal, 2007, 51(4): 617−630. doi:  10.1111/j.1365-313X.2007.03168.x
[9] 侯佳, 李发虎, 李龙梅, 等. 野生山丹组织培养体系优化与品种改良研究进展[J]. 中国园艺文摘, 2017, 33(10):67−69, 76. doi:  10.3969/j.issn.1672-0873.2017.10.025

Hou J, Li F H, Li L M, et al. Advances in tissue culture techniques optimization and variety improvement of wild Lilium pumilum DC.[J]. Chinese Horticulture Abstracts, 2017, 33(10): 67−69, 76. doi:  10.3969/j.issn.1672-0873.2017.10.025
[10] De Clercq I, Vermeirssen V, Van Aken O, et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis[J]. The Plant Cell, 2013, 25(9): 3472−3490. doi:  10.1105/tpc.113.117168
[11] 刘锴栋, 袁长春, 黎海利, 等. 番荔枝GA20氧化酶基因的克隆与表达分析[J]. 植物生理学报, 2015, 51(10):1697−1705.

Liu K D, Yuan C C, Li H L, et al. Cloning and expression analysis of GA20-Oxidase gene from sugar apple (Annona squamosa)[J]. Plant Physiology Journal, 2015, 51(10): 1697−1705.
[12] Kamiuchi Y, Yamamoto K, Furutani M, et al. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development[J/OL]. Frontiers in Plant Science, 2014, 5: 165 [2019−07−15]. https://doi.org/10.3389/fpls.2014.00165.
[13] 康桂娟, 曾日中, 聂智毅, 等. 巴西橡胶树NAC转录因子HbNAC1基因的克隆及生物信息学分析[J]. 中国农学通报, 2012, 28(34):1−11. doi:  10.3969/j.issn.1000-6850.2012.34.001

Kang G J, Zeng R Z, Nie Z Y, et al. Cloning and bioinformatics analysis of a NAC transcription factor HbNAC1 from Hevea brasiliensis[J]. Chinese Agricultural Science Bulletin, 2012, 28(34): 1−11. doi:  10.3969/j.issn.1000-6850.2012.34.001
[14] Furuta K M, Yadav S R, Lehesranta S, et al. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation[J]. Science, 2014, 345: 933−937. doi:  10.1126/science.1253736
[15] Kim S G, Lee S, Seo P J, et al. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice[J]. Genomics, 2010, 95(1): 56−65. doi:  10.1016/j.ygeno.2009.09.003
[16] Kim S G, Lee A K, Yoon H K, et al. A mem-brane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(1): 77−88. doi:  10.1111/j.1365-313X.2008.03493.x
[17] 樊金娟, 阮燕晔. 植物生理学实验教程[M]. 北京: 中国农业大学出版社, 2015.

Fan J J, Ruan Y Y. Experimental course of plant physiology[M]. Beijing: China Agricultural University Press, 2015.
[18] 刘萍, 李明军. 植物生理学实验[M]. 北京: 科学出版社, 2016.

Liu P, Li M J. Experiments of plant physiology[M]. Beijing: Science Press, 2016.
[19] 华智锐, 李小玲. 水杨酸浸种对小麦品种‘商麦5226’盐胁迫的缓解效应[J]. 西北农业学报, 2015, 24(9):29−35. doi:  10.7606/j.issn.1004-1389.2015.09.005

Hua Z R, Li X L. Mitigative effect of seed-soaking by salicylic acid on wheatcultiver of ‘Shangmai 5226’ under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(9): 29−35. doi:  10.7606/j.issn.1004-1389.2015.09.005
[20] Zhong R Q, Lee C H, Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Journal of Plant Physiology, 2010, 152(2): 1044−1055. doi:  10.1104/pp.109.148270
[21] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79−87. doi:  10.1016/j.tplants.2004.12.010
[22] Webster D E, Thomas M C. Post-translational modification of plant-made foreign proteins, glycosylation and beyond[J]. Biotech Advances, 2011, 30(2): 410−418.
[23] 段奥其, 冯凯, 刘洁霞, 等. 芹菜NAC转录因子基因AgNAC1的克隆及其对非生物胁迫的响应[J]. 园艺学报, 2018, 45(6):1125−1135.

Duan A Q, Feng K, Liu J X, et al. Cloning and response to abiotic stress of NAC transcription gene AgNAC1 in Apium graveolens[J]. Acta Horticulturae Sinica, 2018, 45(6): 1125−1135.
[24] 樊蕾, 高志英. 番茄SlNAC71基因克隆及表达分析[J]. 分子植物育种, 2018, 16(13):4172−4175.

Fan L, Gao Z Y. Cloning and expression analysis of SlNAC71 gene in tomato[J]. Molecular Plant Breeding, 2018, 16(13): 4172−4175.
[25] 张晓菲, 路信, 段卉, 等. 胡杨NAC转录因子PeNAC045基因的克隆及功能分析[J]. 北京林业大学学报, 2015, 37(6):1−10.

Zhang X F, Lu X, Duan H, et al. Cloning and functional analysis of PeNAC045 from Populus euphratica[J]. Journal of Beijing Forestry University, 2015, 37(6): 1−10.
[26] 袁义杭, 张鹤华, 游韩莉, 等. 青杄PwNAC42基因的克隆及表达模式分析[J]. 生物技术通报, 2018, 34(3):113−120.

Yuan Y H, Zhang H H, You H L, et al. Cloning and expression analysis of PwNAC42 in Picea wilsonii[J]. Biotechnology Bulletin, 2018, 34(3): 113−120.
[27] 王燕飞, 红格日其其格, 王光霞, 等. 中间锦鸡儿CiATAF1基因的亚细胞定位及表达分析[J]. 华北农学报, 2019, 34(3):23−30. doi:  10.7668/hbnxb.201751243

Wang Y F, Honggeriqiqige, Wang G X, et al. Subcellular localization and expression analysis of CiATAF1 gene in Caragana intermedia[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(3): 23−30. doi:  10.7668/hbnxb.201751243
[28] Zheng X N, Chen B, Lu G J, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications, 2008, 379(4): 985−989.
[29] 姜红岩, 张蕊, 滕珂, 等. 日本结缕草ZjNAC2基因的克隆、亚细胞定位及表达分析[J]. 草业科学, 2019, 36(6):1553−1562.

Jiang H Y, Zhang R, Teng K, et al. Molecular cloning, subcellular localization analysis, and expression characterization of ZjNAC2 from Zoysia japonica[J]. Pratacultural Science, 2019, 36(6): 1553−1562.
[30] Zhao J H, Li M Z, Gu D C, et al. Involvement of rice histone deacetylase HDA705 in seed germination and in response to ABA and abiotic stresses[J]. Biochemical and Biophysica Research Communications, 2016, 470(2): 439−444. doi:  10.1016/j.bbrc.2016.01.016
[31] Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2019, 20(13): 3225 [2019−07−15]. https://doi.org/10.3390/ijms20133225.
[32] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi:  10.1146/annurev.arplant.55.031903.141701
[33] Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137: 64−70. doi:  10.1016/j.ecoenv.2016.11.029
[34] Zhao X, Yang X W, Pei S Q, et al. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis[J]. Gene, 2016, 586(1): 158−169. doi:  10.1016/j.gene.2016.04.028
[35] Ma X J, Zhang B, Liu C J, et al. Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance[J]. Plant Science, 2017, 265: 1−11. doi:  10.1016/j.plantsci.2017.09.008
[36] Yu X W, Liu Y M, Wang S, et al. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 613−627. doi:  10.1007/s00299-015-1907-5