[1] 朱城伟, 朱大昌, 陈健伟, 等. 3-RPS并联机构SMC控制系统仿真[J]. 机械设计与制造, 2018(9):119−122. doi:  10.3969/j.issn.1001-3997.2018.09.033

Zhu C W, Zhu D C, Chen J W, et al. SMC control system simulation of 3-RPS parallel mechanism[J]. Machinery Design & Manufacture, 2018(9): 119−122. doi:  10.3969/j.issn.1001-3997.2018.09.033
[2] 柴保明, 王远东. 3TPT并联机构的误差补偿方法[J]. 机床与液压, 2013, 41(17):85−90. doi:  10.3969/j.issn.1001-3881.2013.17.022

Chai B M, Wang Y D. An error compensating method for 3TPT parallel mechanism[J]. Machine Tool & Hydraulics, 2013, 41(17): 85−90. doi:  10.3969/j.issn.1001-3881.2013.17.022
[3] Ni Y B, Wu N, Zhong X Y, et al. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation[J]. Chinese Journal of Mechanical Engineering, 2015, 28(4): 830−840. doi:  10.3901/CJME.2015.0122.051
[4] 秦海宁, 姚单, 杜渝. 3-PRR并联机器人空间位置分析及误差研究[J]. 激光杂志, 2017, 38(12):92−95.

Qing H N, Yao D, Du Y. The analysis and error research of 3-PRR parallel robot space position[J]. Laser Journal, 2017, 38(12): 92−95.
[5] Vinoth V, Singh Y, Santhakumar M. Indirect disturbance compensation control of a planar parallel (2-PRP and 1-PPR) robotic manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(5): 556−564. doi:  10.1016/j.rcim.2014.03.010
[6] Castillo-Castaneda E, Takeda Y. Improving path accuracy of a crank-type 6-dof parallel mechanism by stiction compensation[J]. Mechanism and Machine Theory, 2008, 43(1): 104−114. doi:  10.1016/j.mechmachtheory.2006.12.002
[7] 夏筱筠, 林浒. 基于双模糊控制算法的数控机床过象限误差补偿方法研究[J]. 小型微型计算机系统, 2018, 39(5):241−245.

Xia X J, Lin H. Study on the compensation for the over quadrant error of CNC based on the dual fuzzy control algorithm[J]. Journal of Chinese Computer Systems, 2018, 39(5): 241−245.
[8] 彭志文, 高宏力, 梁超, 等. RBF神经网络补偿的并联机器人控制研究[J]. 机械设计与制造, 2018(3):252−259. doi:  10.3969/j.issn.1001-3997.2018.03.074

Peng Z W, Gao H L, Liang C, et al. Research on parallel robot control based on RBF neural network compensation[J]. Machinery Design & Manufacture, 2018(3): 252−259. doi:  10.3969/j.issn.1001-3997.2018.03.074
[9] Behrad D, Sasan T, Brian S, et al. A novel adaptive neural network compensator as applied to position control of a pneumatic system[J]. Intelligent Control & Automation, 2011, 2(4): 388−395.
[10] Niu K, Wang J, Ting K L, et al. Output error analysis of planar 2-dof five-bar mechanism[J]. IOP Conference Series: Materials Science and Engineering, 2018, 324(1): 1−5.
[11] Si H, Wang L. Error compensation in the five-axis flank milling of thin-walled workpieces[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(4): 1224−1234. doi:  10.1177/0954405418780163
[12] Schneider H, Drust M, Puzik A, et al. Compensation of errors in robot machining with a parallel 3D-piezo compensation mechanism[J]. Procedia Cirp, 2013, 7(12): 305−310.
[13] 丁建文, 郝宁仲, 徐兆军, 等. 数控木工曲线带锯机的研制[J]. 木材加工机械, 2005(3):16−19. doi:  10.3969/j.issn.1001-036X.2005.03.004

Ding J W, Hao N Z, Xu Z J, et al. Development of the numerical control woodworking curve band saw[J]. Wood Processing Machinery, 2005(3): 16−19. doi:  10.3969/j.issn.1001-036X.2005.03.004
[14] Niu K J, Wang J, Kwun-Lon T, et al. Output error analysis of planar 2-DOF five-bar mechanism[J]. Applied Mechanics and Materials, 2013, 324(1): 1−5.