[1] 刘小金, 徐大平, 杨曾奖, 等.海南尖峰岭檀香心材比例、精油含量和成分的分布特征[J].华南农业大学学报, 2016, 37(5):66-71. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201605012

Liu X J, Xu D P, Yang Z J, et al. Heartwood proportion and distribution of essential oil content and composition of Santalum album in Jianfeng Mountain Hainan[J]. Journal of South China Agricultural University, 2016, 37(5):66-71. http://d.old.wanfangdata.com.cn/Periodical/hnnydxxb201605012
[2] 林芬芳, 丁晓东, 付志鹏, 等.基于互信息理论的水稻磷素营养高光谱诊断[J].光谱学与光谱分析, 2009, 29(19): 2467-2470. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200909039

Lin F F, Ding X D, Fu Z P, et al. Application of mutual information to variable selection in diagnosis of phosphorus nutrition in rice[J]. Spectroscopy and Spectral Analysis, 2009, 29(19): 2467-2470. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200909039
[3] 王艳丽, 王京, 刘国顺, 等.磷施用量对烤烟根系生理及叶片光合特性的影响[J].植物营养与肥料学报, 2016, 22(2):410-417. http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602015

Wang Y L, Wang J, Liu G S, et al. Effects of different phosphorus levels on root physiological and leaf photosynthetic characteristics of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2):410-417. http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201602015
[4] 连慧达, 裴红宾, 张永清, 等.施磷量对不同品种红小豆形态和生理特性的影响[J].植物营养与肥料学报, 2015, 21(3):792-799. http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503027

Lian H D, Pei H B, Zhang Y Q, et al. Effect of phosphorus fertilization on morphological and physiological characteristics of adzuki beans[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3):792-799. http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201503027
[5] 郑亚萍, 信彩云, 王才斌, 等.磷肥对花生根系形态、生理特性及产量的影响[J].植物生态学报, 2013, 37(8):777-785. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201308009

Zheng Y P, Xin C Y, Wang C B, et al. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea)[J]. Chinese Journal of Plant Ecology, 2013, 37(8):777-785. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201308009
[6] 赵霞, 徐大平, 杨曾奖, 等.养分胁迫对降香黄檀幼苗生长及叶片养分状况的影响[J].生态学杂志, 2017, 36(6): 1503-1508. http://d.old.wanfangdata.com.cn/Periodical/stxzz201706006

Zhao X, Xu D P, Yang Z J, et al. Effects of nutrient stress on seedling growth and foliar nutrient status of Dalbergia odorifera[J]. Chinese Journal of Ecology, 2017, 36(6): 1503-1508. http://d.old.wanfangdata.com.cn/Periodical/stxzz201706006
[7] 李美清, 李晋阳, 毛罕平.基于光谱特征和生理特征的番茄磷营养诊断方法[J].农业机械学报, 2016, 47(3):286-291. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201603040

Li M Q, Li J Y, Mao H P. Tomatoes phosphorus nutrition diagnosis based on spectral and physiological characteristics[J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(3):286-291. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201603040
[8] 何彩莲, 郑顺林, 万年鑫, 等.马铃薯光谱及数字图像特征参数对氮素水平的响应及其应用[J].光谱学与光谱分析, 2016, 36(9):2930-2936. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201609039

He C L, Zheng S L, Wan N X, et al. Potato spectrum and the digital image feature parameters on the response of the nitrogen level and its application[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2930-2936. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201609039
[9] 陈敏, 郑曙峰, 刘小玲, 等.基于数码图像识别的棉花氮营养诊断研究[J].农学学报, 2017, 7(7):77-83. http://d.old.wanfangdata.com.cn/Periodical/zgncxkkj201707013

Chen M, Zheng S F, Liu X L, et al. Cotton nitrogen nutrition diagnosis based on digital image[J]. Journal of Agriculture, 2017, 7(7):77-83. http://d.old.wanfangdata.com.cn/Periodical/zgncxkkj201707013
[10] Osborne S L, Schepers J S, Francis D D, et al. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements[J]. Agronomy Journal, 2002, 94(6): 1215-1221. doi:  10.2134/agronj2002.1215
[11] 黄双萍, 岳学军, 洪添胜.基于高光谱的柑橘叶片磷含量估算模型实验[J].农业工程学报, 2013, 44(4):202-207. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201304035

Huang S P, Yue X J, Hong T S. Hyperspectral estimation model of total phosphorus content for citrus leaves[J]. The Chinese Society of Agricultural Machinery, 2013, 44(4):202-207. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201304035
[12] 高洪燕, 毛罕平, 张晓东.生菜叶中磷含量的光谱定量分析[J].农业机械学报, 2014, 45(增刊):276-280. http://d.old.wanfangdata.com.cn/Conference/8619613

Gao H Y, Mao H P, Zhang X D. Quantitative determination of phosphorus in lettuce leaf using spectroscopy[J]. The Chinese Society of Agricultural Machinery, 2014, 45(Suppl.):276-280. http://d.old.wanfangdata.com.cn/Conference/8619613
[13] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8:127-150. doi:  10.1016/0034-4257(79)90013-0
[14] Buschmann C, Nagel E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation[J]. International Journal of Remote Sensing, 1993, 14:711-722. doi:  10.1080/01431169308904370
[15] Gitelson A A, Kaufman Y J, Merzlyak M N. Use of green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58:289-298. doi:  10.1016/S0034-4257(96)00072-7
[16] Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51:375-384. doi:  10.1016/0034-4257(94)00114-3
[17] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160:271-282. doi:  10.1078/0176-1617-00887
[18] Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology, 2004, 161:165-173. doi:  10.1078/0176-1617-01176
[19] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22:229-242. doi:  10.1080/07038992.1996.10855178
[20] Datt B. Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves[J]. International Journal of Remote Sensing, 1999, 20:2741-2759. doi:  10.1080/014311699211778
[21] Wang W, Yao X, Yao X F, et al. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat[J]. Field Crops Res, 2012, 129:90-98. doi:  10.1016/j.fcr.2012.01.014
[22] Mutanga O, Adam E, Adjorlolo C, et al. Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:178-187. doi:  10.1016/j.jag.2014.08.008
[23] 张恒德, 张庭玉, 李涛, 等.基于BP神经网络的污染物浓度多模式集成预报[J].中国环境科学, 2018, 38(4): 1243-1256. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201804004

Zhang H D, Zhang T Y, Li T, et al. Forecast of air quality pollutants' concentrations based on BP neural network multi-model ensemble method[J]. China Environmental Science, 2018, 38(4):1243-1256. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201804004
[24] 李哲, 张飞, 陈丽华, 等.光谱指数的植物叶片叶绿素含量估算模型[J].光谱学与光谱分析, 2018, 38(5):1533-1539. http://d.old.wanfangdata.com.cn/Periodical/stxb201420007

Li Z, Zhang F, Chen L H, et al. Research on spectrum variance of vegetation leaves and estimation model for leaf chlorophyll content based on the spectral index[J]. Spectroscopy and Spectral Analysis, 2018, 38(5):1533-1539. http://d.old.wanfangdata.com.cn/Periodical/stxb201420007
[25] 刘丽颖, 官冬杰, 杨清伟, 等.基于MIV-BP型的喀斯特地区水资源安全影响因素分析[J].水土保持通报, 2017, 37(5):128-134. http://d.old.wanfangdata.com.cn/Periodical/stbctb201705022

Liu L Y, Guan D J, Yang Q W, et al. Influence factors of water resource security in karst area based on MIV-BP model[J]. Bulletin of Soil and Water Conservation, 2017, 37(5):128-134. http://d.old.wanfangdata.com.cn/Periodical/stbctb201705022
[26] 张婉婉, 杨可明, 汪国平, 等.基于EMD-SD光谱的玉米叶片叶绿素含量GA-BP模型反演[J].浙江农业学报, 2016, 28(8):1297-1303. doi:  10.3969/j.issn.1004-1524.2016.08.04

Zhang W W, Yang K M, Wang G P, et al. Study on GA-BP inversing modeling method of corn leaf chlorophyll content based on EMD and spectral derivative method[J]. Acta Agriculture Zhejiangnsis, 2016, 28(8):1297-1303. doi:  10.3969/j.issn.1004-1524.2016.08.04
[27] 杨梅花, 赵小敏.基于可见-近红外光谱变量选择的土壤全氮含量估测研究[J].中国农业科学, 2014, 47(12):2374-2383. doi:  10.3864/j.issn.0578-1752.2014.12.010

Yang M H, Zhao X M. Study on soil total N estimation by Vis-NIR spectra with variable selection[J]. Scientia Agriculture Sinica, 2014, 47(12):2374-2383. doi:  10.3864/j.issn.0578-1752.2014.12.010
[28] 迟德霞, 张伟, 王洋.基于EXG因子的水稻秧苗图像分割[J].安徽农业科学, 2012(36):17902-17903. doi:  10.3969/j.issn.0517-6611.2012.36.164

Chi D X, Zhang W, Wang Y. Segmentation of rice seedling image based on EXG factor[J]. Journal of Anhui Agricultural Science, 2012(36):17902-17903. doi:  10.3969/j.issn.0517-6611.2012.36.164
[29] 苏义鑫, 夏慧雯.用于风电功率预测的RPCL优化神经网络模型[J].北京工业大学学报, 2016, 42(5):674-678. http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201605005

Su Y X, Xia H W. Rival penalized competitve learning-based neural network model for wind power forecasting[J]. Journal of Beijing University of Technology, 2016, 42(5):674-678. http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201605005