[1] Saleska S R, Shaw M R, Fischer M L, et al. Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming[J]. Global Biogeochemical Cycles, 2002, 16(4): 1−18.
[2] Dunne J A, Saleska S R, Fischer M L, et al. Integrating experimental and gradient methods in ecological climate change research[J]. Ecology, 2004, 85(4): 904−916. doi: 10.1890/03-8003
[3] Fukami T, Wardle D A. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients[J]. Pro-ceedings of the Royal Society of London B Biological Sciences, 2005, 272: 2105−2115. doi: 10.1098/rspb.2005.3277
[4] IPCC (Intergovernmental Panel on Climate Change). Working group I contribution to the IPCC fifth assessment report climate change 2013: the physical science basis[M]//Thomas F S, Dahe Q, Gian-Kasper P, et al. Observations: atmosphere and surface. Cambridge: Cambridge University Press, 2013.
[5] Fang O, Wang Y, Shao X. The effect of climate on the net primary productivity (NPP) of Pinus koraiensis, in the Changbai Mountains over the past 50 years[J]. Trees, 2015, 30(1): 1−14.
[6] 高志涛, 吴晓春. 蒙古栎地理分布规律的探讨[J]. 防护林科技, 2005(2):83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034Gao Z T, Wu X C. Discussion on geographic distribution law of Quercus mongolica[J]. Protection Forest Science and Technology, 2005(2): 83−84. doi: 10.3969/j.issn.1005-5215.2005.01.034
[7] 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009Zhang C Y, Zhao X H, Zhao Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1090−1100. doi: 10.3773/j.issn.1005-264x.2009.06.009
[8] Kobe R K. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan[J]. Oecologia, 2006, 147(1): 119−133. doi: 10.1007/s00442-005-0252-8
[9] Günter S, Gonzalez P, Álvarez G, et al. Determinants for successful reforestation of abandoned pastures in the Andes: soil condi-tions and vegetation cover[J]. Forest Ecology and Management, 2009, 258(2): 81−91. doi: 10.1016/j.foreco.2009.03.042
[10] 郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用[J]. 生态学报, 2006, 26(4):1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010Guo Z H, Zhang X D, Huang L L, et al. Solar energy and water utilization of Quercus mongolica, a deciduous broadleaf tree, in different light regimes across the edge of a deciduous broad leaved forest[J]. Acta Ecologica Sinica, 2006, 26(4): 1047−1056. doi: 10.3321/j.issn:1000-0933.2006.04.010
[11] 吴家兵, 关德新, 张弥, 等. 长白山地区蒙古栎光合特性[J]. 中国科学院大学学报, 2006, 23(4):548−554.Wu J B, Guan D X, Zhang M, et al. Photosynthetic characteristics of Quercus mongolica in region of Changbai Mountain[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2006, 23(4): 548−554.
[12] 张弥, 吴家兵, 关德新, 等. 长白山阔叶红松林主要树种光合作用的光响应曲线[J]. 应用生态学报, 2006, 17(9):1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004Zhang M, Wu J B, Guan D X, et al. Light response curve of dominant tree species photosynthesis in broadleaved Korean pine forest of Changbai Mountain[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1575−1578. doi: 10.3321/j.issn:1001-9332.2006.09.004
[13] 许中旗, 黄选瑞, 徐成立, 等. 光照条件对蒙古栎幼苗生长及形态特征的影响[J]. 生态学报, 2009, 29(3):1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008Xu Z Q, Huang X R, Xu C L, et al. The impacts of light conditions on the growth and morphology of Quercus mongolica seedlings[J]. Acta Ecologica Sinica, 2009, 29(3): 1121−1128. doi: 10.3321/j.issn:1000-0933.2009.03.008
[14] Körner C. The use of ‘altitude’ in ecological research[J]. Trends in Ecology and Evolution, 2007, 22(11): 569−574. doi: 10.1016/j.tree.2007.09.006
[15] Angert A L. Growth and leaf physiology of monkeyflowers with different altitude ranges[J]. Oecologia, 2006, 148(2): 183−94. doi: 10.1007/s00442-006-0361-z
[16] Dornbos D L, Martzke M R, Gries K, et al. Physiological competitiveness of autumn olive compared with native woody competitors in open field and forest understory[J]. Forest Ecology and Management, 2016, 372: 101−108. doi: 10.1016/j.foreco.2016.03.051
[17] Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem[J]. Tree Physiology, 1999, 19(12): 423−423.
[18] Marin F R, Ribeiro R V, Marchiori P E R. How can crop modeling and plant physiology help to understand the plant responses to climate change? A case study with sugarcane[J]. Theoretical and Experimental Plant Physiology, 2014, 26(1): 1−15. doi: 10.1007/s40626-014-0004-4
[19] Callaway R M, Delucia E H, Schlesinger W H. Biomass allocation of montane and desert ponderosa pine: an analog for response to climate change[J]. Ecology, 1994, 75(5): 1474−1481. doi: 10.2307/1937470
[20] Frazer G W, Fournier R A, Trofymow J A, et al. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission[J]. Agricultural and Forest Meteorology, 2001, 109(4): 258−263.
[21] Schollenberger C J. A rapid approximate method for determining soil organic matter[J]. Soil Science, 1927, 24: 65−68. doi: 10.1097/00010694-192707000-00008
[22] Mitchell A K. Acclimation of pacific yew (Taxus brevifolia) foliage to sun and shade[J]. Tree Physiology, 1998, 18: 749−757. doi: 10.1093/treephys/18.11.749
[23] Berenblum I, Chain E. An improved method for the colorimetric determination of phosphate[J]. Biochemical Journal, 1938, 32(2): 295−298. doi: 10.1042/bj0320295
[24] Yan C, Han S, Zhou Y, et al. Needle δ13C and mobile carbohydrates in Pinus koraiensis in relation to decreased temperature and increased moisture along an elevational gradient in NE China[J]. Trees, 2013, 27(2): 389−399. doi: 10.1007/s00468-012-0784-6
[25] Fan B, Sang W, Axmacher J C. Forest vegetation responses to climate and environmental change: a case study from Changbai Mountain, NE China[J]. Forest Ecology and Management, 2012, 262(11): 2052−2060.
[26] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637−640. doi: 10.1007/s11099-007-0110-5
[27] Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups[J]. Oecologia, 1998, 114(4): 471−482. doi: 10.1007/s004420050471
[28] Fryer J H, Ledig F T. Microevolution of the photosynthetic temperature optimum in relation to elevational complex gradient[J]. Canadian Journal of Botany, 1972, 50(6): 1231−1235. doi: 10.1139/b72-149
[29] Cabrera H M, Rada F, Cavieres L. Effects of temperature on photosynthesis of two morphologically contrasting plant species along an altitudinal gradient in the tropical high Andes[J]. Oecologia, 1998, 114(2): 145−152. doi: 10.1007/s004420050430
[30] Kumar T A, Charan T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology, 1998, 117(3): 851−858. doi: 10.1104/pp.117.3.851
[31] 赵娟, 宋媛, 毛子军. 蒙古栎幼苗光合作用以及叶绿素荧光对温度和降水交互作用的响应[J]. 北京林业大学学报, 2013, 35(1):64−71.Zhao J, Song Y, Mao Z J. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64−71.
[32] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 74−79.
[33] 王淼, 李秋荣, 郝占庆, 等. 土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J]. 应用生态学报, 2004, 15(10):1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012Wang M, Li Q R, Hao Z Q, et al. Effects of soil water regimes on the growth of Quercus mongolica seedlings in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1765−1770. doi: 10.3321/j.issn:1001-9332.2004.10.012
[34] 赵娟. 气候变化背景下模拟温度升高和降水变化对蒙古栎种子萌发和幼苗生长的影响[D]. 哈尔滨: 东北林业大学, 2013: 14−16.Zhao J. Study on the impact of climate change on seed germination and seedling growth of Quercus mongalica[D]. Harbin: Northeast Forestry University, 2013: 14−16.
[35] Stephanie D C, Margaretj S, Lawren S. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation[J]. International Journal of Plant Sciences, 2009, 170(1): 61−75. doi: 10.1086/593111
[36] Scheepens J F, Frei E S, Stöcklin J. Genotypic and environmental variation in specific leaf area in a widespread alpine plant after transplantation to different altitudes[J]. Oecologia, 2010, 164(1): 141−150. doi: 10.1007/s00442-010-1650-0
[37] Luo J, Zang R, Li C. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China[J]. Forest Ecology and Management, 2005, 221(1−3): 285−290.
[38] 李东胜, 史作民, 刘世荣, 等. 南北样带温带区栎属树种幼苗功能性状的变异研究[J]. 林业科学研究, 2013, 26(2):156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005Li D S, Shi Z M, Liu S R, et al. Variation of functional traits of Quercus seedlings from different provenances of temperate zone of NSTEC[J]. Forest Research, 2013, 26(2): 156−162. doi: 10.3969/j.issn.1001-1498.2013.02.005
[39] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状对气象因子的响应[J]. 生态学报, 2010, 30(21):5781−5789.Feng Q H, Shi Z M, Dong L L, et al. The response of functional traits of Quercus species to meteorological factors in temperate zone of NSTEC[J]. Acta Ecologica Sinica, 2010, 30(21): 5781−5789.
[40] Fabbro T, Körner C. Altitudinal differences in flower traits and reproductive allocation[J]. Flora-Morphology Distribution Func-tional Ecology of Plants, 2004, 199(70): 70−81.
[41] Delucia E H, Maherali H, Carey E V. Climate-driven changes in biomass allocation in pines[J]. Global Change Biology, 2000, 6(5): 587−593. doi: 10.1046/j.1365-2486.2000.00338.x
[42] 程徐冰, 吴军, 韩士杰, 等. 减少降水对长白山蒙古栎叶片生理生态特性的影响[J]. 生态学杂志, 2011, 30(9):1908−1914.Cheng X B, Wu J, Han S J, et al. Effects of decreased rainfall on Quercus mongolica leaf eco-physiological characteristics[J]. Chinese Journal of Ecology, 2011, 30(9): 1908−1914.
[43] Morecroft M D, Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δ13C of Alchemilla alpina[J]. New Phytologist, 1996, 134(3): 471−479. doi: 10.1111/nph.1996.134.issue-3
[44] 侯颖, 王开运, 牛德奎, 等. CO2浓度和温度升高对木本植物养分含量、分配的影响[J]. 江西农业大学学报, 2006, 28(1):95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028Hou Y, Wang K Y, Niu D K, et al. Effects of elevated CO2 and temperature to plant nutrient content and allocation[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(1): 95−100. doi: 10.3969/j.issn.1671-6523.2006.01.028
[45] Körner C H. Functional plant ecology of high mountain ecosystems[M]. Beijing: Science Press, 2008.