[1] Hasenauer H, Monserud R. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996, 84(1/3): 49−60.
[2] Sharma R P, Bílek L, Vacek, Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6): 1875−1889. doi:  10.1007/s00468-017-1593-8
[3] Kuprevicius A, Auty D, Achim A, et al. Quantifying the influence of live crown ratio on the mechanical properties of clear wood[J]. Forestry: An International Journal of Forest Research, 2013, 86(3): 361−369. doi:  10.1093/forestry/cpt006
[4] Monserud R A, Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1/3): 57−80.
[5] 吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37−42.

Lü L, Dong L H, Li F R. Individual tree crown width prediction models for natural Tilia tuan in eastern Heilongjiang Province[J]. Journal of Northeast Forestry University, 2019, 47(7): 37−42.
[6] Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi:  10.1016/j.foreco.2016.01.040
[7] Fu L Y, Sharma R P, Hao K J, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi:  10.1016/j.foreco.2016.12.034
[8] Crecente-Campo F, Álvarez-González J G, Castedo-Dorado F, et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain[J]. Forestry, 2013, 86(4): 481−491. doi:  10.1093/forestry/cpt019
[9] Ritson P, Sochacki S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, southwestern Australia[J]. Forest Ecology and Management, 2003, 175(1/3): 103−117.
[10] Fu L Y, Zhang H R, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology and Management, 2017, 384: 34−43. doi:  10.1016/j.foreco.2016.09.012
[11] McRoberts R, Hahn J T, Hefty G J, et al. Variation in forest inventory field measurements[J]. Canadian Journal of Forest Research, 1994, 24(9): 1766−1770. doi:  10.1139/x94-228
[12] Temesgen H, Lemay V, Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. The Forestry Chronicle, 2005, 81(1): 133−141. doi:  10.5558/tfc81133-1
[13] Ritchie M W, Hann D W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon[R]. Corvallis: Oregon State University, 1987.
[14] Rijal B, Weiskittel A R, Kershaw J A. Development of regional height to diameter equations for 15 tree species in the North American Acadian Region[J]. Forestry: An International Journal of Forest Research, 2012, 85(3): 379−390. doi:  10.1093/forestry/cps036
[15] Yang Y Q, Huang S M. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi:  10.1007/s10342-017-1095-7
[16] 段光爽, 李学东, 冯岩, 等. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):170−176.

Duan G S, Li X D, Feng Y, et al. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 170−176.
[17] Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)[J]. PLoS ONE, 2017, 12(10): e0186394. doi:  10.1371/journal.pone.0186394
[18] Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research, 2004, 34(1): 150−163. doi:  10.1139/x03-199
[19] Yang Y Q, Huang S M, Meng S X, et al. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands[J]. Canadian Journal of Forest Research, 2009, 39(11): 2203−2214. doi:  10.1139/X09-123
[20] Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi:  10.1139/X07-104
[21] Crecente C F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi:  10.1016/j.foreco.2009.11.036
[22] Sharma R P, Breidenbach J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data[J]. Forest Science and Technology, 2015, 11(1): 44−53. doi:  10.1080/21580103.2014.957354
[23] 段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):163−169.

Duan G S, Li X D, Feng Y, et al. Developing a height-diameter relationship model with mixed random effects for Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 163−169.
[24] 李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343−348.

Li W T, Jiang L C, Wan D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3): 343−348.
[25] 雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009, 45(1):74−80.

Lei X D, Li Y C, Xiang W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74−80.
[26] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73.

Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73.
[27] Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Sliva Fennica, 2005, 39(1): 394.
[28] 李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6):9−18.

Li X, Dong L H, Li F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9−18.
[29] Wykoff W R, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R].Ogden: Forest Service, United States Department of Agriculture, 1982.
[30] Popoola F S, Adesoye P O. Crown ratio models for Tectona grandis (Linn. f) stands in Osho Forest Reserve, Oyo State, Nigeria[J]. Journal of Forest & Environmental Science, 2012, 28(2): 63−67.
[31] Walters D K, Hann D W. Taper equations for six conifer species in southwest Oregon[M]. Corvallis: Oregon State University, 1986..
[32] 韩斐斐, 姜立春. 基于树干不同高度直径的落叶松立木材积方程[J]. 东北林业大学学报, 2017, 45(4):65−69.

Han F F, Jiang L C. Tree volume function based on diameter at different relative heights of Dahurian larch[J]. Journal of Northeast Forestry University, 2017, 45(4): 65−69.