[1] 陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2006.

Chen X Y, Shen X H. Tree breeding[M]. Beijing: Higher Education Press, 2006.
[2] 朱之悌. 毛白杨遗传改良[M]. 北京: 中国林业出版社, 2006.

Zhu Z T. Genetic improvement of Populus tomentosa Carr.[M]. Beijing: China Forestry Publishing House, 2006.
[3] White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: Published by CABI, 2007.
[4] MartinT A, Johnsen K H, White T L. Ideotype development in southern pines: rationale and strategies for overcoming scale-related obstacles[J]. Forest Science, 2001, 47(1): 21−28.
[5] Zobel B, Talbert J. Applied forest tree improvement[M]. New York: Wiley, 1984.
[6] Borralho N M G, Dutkowski G W. Comparison of rolling front and discrete generation breeding strategies for trees[J]. Canadian Journal of Forest Research, 2011, 28(7): 987−993.
[7] White T L, Hodge G R, Powell G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genetica, 1993, 42(6): 359−371.
[8] McKeand E, Beineke F. Sublining for half-sib breeding populations of forest trees[J]. Silvae Genetica, 1980, 29(1): 14−17.
[9] Jayawickrama K J S, Carson M J. A breeding strategy for the new zealand radiata pine breeding cooperative[J]. Silvae Genetica, 2000, 49: 82−90.
[10] Barnes R L, Bengtson G W. Effects of fertilization, irrigation, and cover cropping on flowering and on nitrogen and soluble sugar composition of slash pine[J]. Forest Science, 1968, 14(2): 172−180.
[11] Bramlett D L. Genetic gain from mass controlled pollination and top working[J]. Journal of Forestry, 1997, 95(3): 15−19.
[12] McKeand S E, Raley F. Interstock effect on strobilus initiation in top grafted loblolly pine[J]. Forest Genetics, 2000, 7(3): 179−182.
[13] Ho R H. Gibberellin A4/7 enhances seed-cone production in field-grown Black spruce[J]. Canadian Journal of Forest Research, 1988, 18(1): 139−142. doi:  10.1139/x88-022
[14] Ho R H. Promotion of cone production on white spruce grafts by Gibberellin A4/7 application[J]. Forest Ecology and Management, 1988, 23(1): 39−46. doi:  10.1016/0378-1127(88)90012-6
[15] Almqvist C, Ekberg I. Interstock and GA 4/7 effects on flowering after top grafting in Pinus sylvestris[J]. Forest Science, 2002, 8(4): 279−284.
[16] 康向阳. 关于林木无性系育种策略的思考[J]. 北京林业大学学报, 2019, 41(7):1−9.

Kang X Y. Thinking about clonal breeding strategy of forest trees[J]. Journal of Beijing Forestry University, 2019, 41(7): 1−9.
[17] Leite S M M, Bonine C A, Mori E S, et al. Genetic variability in a breeding population of Eucalyptus urophylla S.T. Blake[J]. Silvae Genetica, 2002, 51(5): 253−256.
[18] 董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2):65−75.

Dong H, Liu Q, Zhou Z, et al. Correlation between Heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana[J]. Scientia Silvae Sinicae, 2017, 53(2): 65−75.
[19] El-Kassaby Y A, Lindgren D. Increasing the efficiency of breeding without breeding through phenotypic pre-selection in open pollinated progenies[C]//Joint meeting of the South. For. tree improve. conf. and the Western for. genetics association, Galveston, Texas. 2007: 12−19.
[20] Wang X, Torimaru T, Lindgren D, et al. Marker-based parentage analysis facilitates low input ‘breeding without breeding ’ strategies for forest trees[J]. Tree Genetics & Genomes, 2010, 6(2): 227−235.
[21] Baruca A A, Jakše J, Bandelj D. Paternity analysis of the olive variety ‘Istrska Belica’ and identification of pollen donors by microsatellite markers[J]. The Scientific World Journal, 2014: 1−6.
[22] El-Kassaby Y A, Cappa E P, Liewlaksaneeyanawin C, et al. Breeding without breeding: is a complete pedigree necessary for efficient breeding?[J/OL]. PLoS One, 2011, 6(10): e25737 [2019−10−25]. https://doi.org/10.1371/journal.pone.0025737.
[23] Han Z Q, Gao P, Geng X N, et al. Identification of the male parent of superior half-sib Populus tomentosa individuals based on SSR markers[J]. Molecular Breeding, 2017, 37(12): 155. doi:  10.1007/s11032-017-0754-1
[24] 袁虎威, 王晓飞, 杜清平, 等. 基于BWB的油松初级种子园混合子代优树选择与配置设计[J]. 北京林业大学学报, 2017, 39(11):28−34.

Yuan H W, Wang X F, Du Q P, et al. BWB-assisted plus tree selection and deployment design for bulked progenies of the first-cycle Chinese pine seed orchard[J]. Journal of Beijing Forestry University, 2017, 39(11): 28−34.
[25] Meuwissen T, Goddard M. Accurate prediction of genetic values for complex traits by whole- genome resequencing[J]. Genetics, 2010, 185(2): 623−631. doi:  10.1534/genetics.110.116590
[26] Zhao Y S, Zeng J, Fernando R, et al. Genomic prediction of hybrid wheat performance[J]. Crop Science, 2013, 53(3): 802−810. doi:  10.2135/cropsci2012.08.0463
[27] Wolc A, Kranis A, Arango J, et al. Implementation of genomic selection in the poultry industry[J]. Animal Frontiers, 2016, 6(1): 23−31. doi:  10.2527/af.2016-0004
[28] Grattapaglia D, Silva-Junior O B, Resende R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Frontiers in Plant Science, 2018, 9: 1693. doi:  10.3389/fpls.2018.00010
[29] Fillatti J J, Sellmer I, McGown B, et al. Agrobacterium mediated transformation and regeneration of Populus[J]. Molecular and General Genetics, 1987, 206(2): 192−199. doi:  10.1007/BF00333574
[30] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4):291−297. doi:  10.3321/j.issn:1000-3061.1993.04.017

Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chinese Journal of Biotechnology, 1993, 9(4): 291−297. doi:  10.3321/j.issn:1000-3061.1993.04.017
[31] 苏晓华, 张冰玉, 黄秦军.杨树基因工程育种[M]. 北京: 科学出版社, 2009.

Su X H, Zhang B Y, Huang Q J. Poplar genetic engineering breeding[M]. Beijing: Science Press, 2009.
[32] Lambeth C C, Buijtenen J P, Van Duke S D, et al. Early selection is effective in 20-year-old genetic test of loblolly pine[J]. Silvae Genetica, 1983, 32(5/6): 210−215.
[33] Foster G S. Trends in genetic parameters with stand development and their influence on early selection for volume growth in lobolly pine[J]. Silvae Genetica, 1986, 32(4): 944−959.
[34] Muranty H, Jorge V, Bastien C, et al. Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops[J]. Tree Genetics & Genomes, 2014, 10(6): 1491−1510.
[35] Devey M, Delfino-Mix A, Donaldson D, et al. Efficient mapping of a gene for resistance to white pine blister rust in sugar pine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(6): 2066−2070. doi:  10.1073/pnas.92.6.2066
[36] Jin J Q, Yao M Z, Ma C L, et al. Association mapping of caffeine content with TCS1 in tea plant and its related species[J]. Plant Physiology & Biochemistry, 2016, 105: 251−259.
[37] Sun C, Lai M, Zhang S G, et al. Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 482−492. doi:  10.15302/J-FASE-2017184
[38] Strauss S, Lande R, Namkoong G. Limitations of molecular-marker-aided selection in forest tree breeding[J]. Canadian Journal of Forest Research, 1992, 22(7): 1050−1061. doi:  10.1139/x92-140
[39] Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Molecular Biology, 2005, 57: 461−485. doi:  10.1007/s11103-005-0257-z
[40] 朱之悌. 全国毛白杨优树资源收集、保存和利用的研究[J]. 北京林业大学学报, 1992, 14(增刊3):1−25.

Zhu Z T. Collection, conservation and utilization of plus tree resources of Populus tomentosa in China[J]. Journal of Beijing Forestry University, 1992, 14(Suppl.3): 1−25.
[41] Sedjo R A, Botkin D B. Using forest plantations to spare natural forests[J]. Environment, 1997, 39(10): 14−20.
[42] 许传德. 从连续八次森林资源清查数据看我国森林经营[J]. 林业经济, 2014, 36(4):8−11, 36.

Xu C D. Forest management in china from data of eight forest resources inventories[J]. Forestry Economics, 2014, 36(4): 8−11, 36.