[1] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14. doi:  10.1007/s00425-003-1105-5
[2] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373−399. doi:  10.1146/annurev.arplant.55.031903.141701
[3] Talukdar T, Gorecka K M, De Carvalho-Niebel F, et al. Annexins-calcium and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhization in Medicago truncatula[J]. Acta Biochimica Polonica, 2009, 56(2): 199−210.
[4] Creutz C E, Pazoles C J, Pollard H B. Identification and purification of an adrenal medulla (synexin) that causes calcium-dependent aggregation of isolated chromamn granules[J]. Journal of Biological Chemistry, 1978, 253(8): 2858−2866.
[5] Boustead C M, Smallwood M, Small H, et al. Identification of calcium-dependent phospholipid-binding proteins in higher plant cells[J]. FEBS Letters, 1989, 244(2): 456−460. doi:  10.1016/0014-5793(89)80582-4
[6] Smallwood M P, Keen J N, Bowles D J. Purification and partial sequence analysis of plant annexins[J]. Biochemical Journal, 1990, 270(1): 157−161. doi:  10.1042/bj2700157
[7] Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: a potential role in the regulation of callose synthase[J]. Plant Journal, 1993, 3(6): 763−772. doi:  10.1111/j.1365-313X.1993.00763.x
[8] Seals D F, Parrish M L, Randall S K. A 42-kilodalton annexin-like protein is associated with plant vacuoles[J]. Plant Physiology, 1994, 106(4): 1403−1412. doi:  10.1104/pp.106.4.1403
[9] Zhou M L, Yang X B, Zhang Q, et al. Induction of annexin by heavy metals and jasmonic acid in Zea mays[J]. Functional and Integrative Genomics, 2013, 13: 241−251.
[10] Clark G B, Sessions A, Eastburn D J, et al. Differential expression of members of the annexin multigene family in arabidopsis[J]. Plant Physiology, 2001, 126(3): 1072−1084. doi:  10.1104/pp.126.3.1072
[11] Hashimoto M, Toorchi M, Matsushita K, et al. Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins[J]. Protein and Peptide Letters, 2009, 16(6): 685−697. doi:  10.2174/092986609788490140
[12] Yadav D, Boyidi P, Ahmed I, et al. Plant annexins and their involvement in stress responses[J]. Environmental and Experimental Botany, 2018, 155(1): 293−306.
[13] Kovács I, Ayaydin F, Oberschall A, et al. Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa[J]. The Plant Journal, 1998, 15(2): 185−197. doi:  10.1046/j.1365-313X.1998.00194.x
[14] Kreps J A, Wu Y, Chang H S, et al. Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiology, 2002, 130(4): 2129−2141. doi:  10.1104/pp.008532
[15] Cantero A, Barthakur S, Bushart T J, et al. Expression profiling of the arabidopsis annexin gene family during germination, de-etiolation and abiotic stress[J]. Plant Physiology and Biochemistry, 2006, 44(1): 13−24. doi:  10.1016/j.plaphy.2006.02.002
[16] Lee S, Lee E J, Yang E J, et al. Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in arabidopsis[J]. The Plant Cell, 2004, 16(6): 1378−1391. doi:  10.1105/tpc.021683
[17] Konopka-Postupolska D, Clark G, Goch G, et al. The role of annexin1 in drought stress in arabidopsis[J]. Plant Physiology, 2009, 150(3): 1394−1410. doi:  10.1104/pp.109.135228
[18] Jami S K, Clark G B, Turlapati S A, et al. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco[J]. Plant Physiology and Biochemistry, 2008, 46(12): 1019−1030. doi:  10.1016/j.plaphy.2008.07.006
[19] Breton G, Vazquez-Tello A, Danyluk J, et al. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature[J]. Plant and Cell Physiology, 2000, 41(2): 177−184. doi:  10.1093/pcp/41.2.177
[20] 张一南. 胡杨PeAnn1促进转基因拟南芥Cd2+内流的分子机制研究[D]. 北京: 北京林业大学, 2018.

Zhang Y N. Populus euphratica Annexin1 facilitated Cd2+ influx in transgenic arabidopsis under cadmium stress[D]. Beijing: Beijing Forestry University, 2018.
[21] Zhang H, Deng C, Yao J, et al. Populus euphratica JRL mediates ABA response, ionic and ROS homeostasis in Arabidopsis under salt stress[J/OL]. International Journal of Molecular Sciences, 2019, 20(4): 815 (2019−02−14) [2019−08−20]. https://doi.org/10.3390/ijms20040815.
[22] Cathcart R, Schwiers E, Ames B N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay[J]. Analytical Biochemistry, 1983, 134(1): 111−116. doi:  10.1016/0003-2697(83)90270-1
[23] Trevor E, Kraus R, Austin F. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiolgy, 1994, 35(1): 45−52.
[24] Wang R G, Chen S L, Zhou X Y, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology, 2008, 28(6): 947−957. doi:  10.1093/treephys/28.6.947
[25] Wang R G, Chen S L, Deng L, et al. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars[J]. Trees, 2007, 21(5): 581−591. doi:  10.1007/s00468-007-0154-y
[26] 王瑞, 陈永忠, 陈隆升, 等. 油茶叶片SPAD值与叶绿素含量的相关分析[J]. 中南林业科技大学学报, 2013, 33(2):77−80.

Wang R, Chen Y Z, Chen L S, et al. Correlation analysis of SPAD value and chlorophyll content in leaves of Camellia oleifera[J]. Journal of Central South University of Forestry and Technology, 2013, 33(2): 77−80.
[27] Allan A C, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells[J]. The Plant Cell, 1997, 9: 1559−1572. doi:  10.2307/3870443
[28] Zgallaï H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology, 2006, 48(6): 679−685. doi:  10.1111/j.1744-7909.2006.00272.x
[29] Wu W M, Li J C, Chen H J, et al. Effects of nitrogen fertilization on chlorophyll fluorescence change in maize (Zea mays L.) under waterlogging at seedling stage[J]. Journal of Food Agriculture and Environment, 2013, 11(1): 545−552.
[30] Lang Y, Wang M, Zhang G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi:  10.1007/s11099-013-0036-z
[31] Demmig B, Winter K, Krüger A, et al. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy[J]. Plant Physiology, 1987, 84(2): 218−224. doi:  10.1104/pp.84.2.218
[32] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi:  10.1016/S1360-1385(02)02312-9
[33] 张会龙, 武霞, 尧俊, 等. 胡杨PeREM1.3 过表达提高烟草耐盐性的机制[J]. 北京林业大学学报, 2019, 41(1):1−9.

Zhang H L, Wu X, Yao J, et al. Overexpression mechanism of PeREM1.3 from Populus euphratica enhancing salt tolerance in transgenic tobacco[J]. Journal of Beijing Forestry University, 2019, 41(1): 1−9.
[34] 陈斌, 王亚男, 马丹炜, 等. 土荆芥化感胁迫对玉米幼根抗氧化酶活性和基因表达的影响[J]. 生态环境学报, 2015, 24(10):1640−1646.

Chen B, Wang Y N, Ma D W, et al. The antioxidant enzyme activities and their gene expression in maize radicle under the allelochemical stress from Chenopodium ambrosioides L.[J]. Ecology and Environmental Sciences, 2015, 24(10): 1640−1646.
[35] Huh S M, Noh E K, Kim H G, et al. Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses[J]. Plant and Cell Physiology, 2010, 51(9): 1499−1514. doi:  10.1093/pcp/pcq111
[36] 王希, 李勇, 朱延明, 等. 野生大豆胁迫应答膜联蛋白基因的克隆及胁迫耐性分析[J]. 作物学报, 2010, 36(10):1666−1673.

Wang X, Li Y, Zhu Y M, et al. Cloning and tolerance analysis of GsANN gene related to response on stress in Glycine soja[J]. The Plant Cell, 2010, 36(10): 1666−1673.
[37] 却志群, 於紫蕾, 沈春修. 水稻膜联蛋白基因OsAnn8干旱和低温条件下表达模式以及CRISPR/Cas9定点编辑[J]. 华北农学报, 2019, 34(1):54−60.

Que Z Q, Yu Z L, Shen C X. Expression patterns of Annexin OsAnn8 and CRISPR/Cas9-mediated genome editing of rice under drought and low temperature condition[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 54−60.
[38] Liao C, Zheng Y, Guo Y. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in arabidopsis[J]. New Phytologist, 2017, 216(1): 163−177. doi:  10.1111/nph.14679