[1] 严思维, 陈爱民, 林勇明, 等. 干热河谷区不同林龄赤桉叶中养分含量和再吸收率的比较及其线性回归分析[J]. 植物资源与环境学报, 2017, 26(1):39−46. doi:  10.3969/j.issn.1674-7895.2017.01.05

Yan S W, Chen A M, Lin Y M, et al. Comparisons on content and reabsorption rate of nutrients in leaf of Eucalyptus camaldulensis at different stand ages in arid-hot valley and their linear-regression analysis[J]. Journal of Plant Resources and Environment, 2017, 26(1): 39−46. doi:  10.3969/j.issn.1674-7895.2017.01.05
[2] Santa R I, Leonardi S, Rapp M. Foliar nutrient dynamics and nutrient use efficiency in Castanea sativa coppice stands of southern Europe[J]. Forestry, 2001, 74: 1−10. doi:  10.1093/forestry/74.1.1
[3] 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522−527.

Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages ofLeucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522−527.
[4] 汤璐瑛. 木本植物叶片养分重吸收研究[D]. 北京: 北京大学, 2012.

Tang L Y. Study on nutrient reabsorption of woody plant leaves[D]. Beijing: Peking University, 2012.
[5] Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology, 1993, 74(1): 124−129. doi:  10.2307/1939507
[6] Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990, 84: 391−397. doi:  10.1007/BF00329765
[7] 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系[J]. 草业学报, 2016, 25(12):76−83. doi:  10.11686/cyxb2016235

Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu[J]. Acta Prataculturae Sinica, 2016, 25(12): 76−83. doi:  10.11686/cyxb2016235
[8] 张林, 阎恩荣, 魏海霞, 等. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力[J]. 植物生态学报, 2014, 38(12):1325−1332. doi:  10.3724/SP.J.1258.2014.00127

Zhang L, Yan E R, Wei H X, et al. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang[J]. Chinese Journal of Plant Ecology, 2014, 38(12): 1325−1332. doi:  10.3724/SP.J.1258.2014.00127
[9] 闫帮国, 何光熊, 史亮涛, 等. 元谋干热河谷燥红土和变性土上植物叶片的元素含量及其重吸收效率[J]. 应用生态学报, 2016, 27(4):1039−1045.

Yan B G, He G X, Shi L T, et al. Element concentration in leaves and nutrient resorption efficiency on dry-red soil and vertisols in dry and hot valley in Yuanmou[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1039−1045.
[10] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2010, 3(6): 540−550.
[11] 戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20):6420−6430.

Qi D H, Wen Z M, Wang H X, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(20): 6420−6430.
[12] 平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响[J]. 生态学报, 2014, 34(8):1965−1974.

Ping C, Wang C K, Quan X K. Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees[J]. Acta Ecologica Sinica, 2014, 34(8): 1965−1974.
[13] 李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18):5760−5767. doi:  10.5846/stxb201304300872

Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18): 5760−5767. doi:  10.5846/stxb201304300872
[14] 赵耀, 王百田, 李萌, 等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018, 24(3):518−524.

Zhao Y, Wang B T, Li M, et al. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 518−524.
[15] 佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征[J]. 草业学报, 2018, 27(4):123−130. doi:  10.11686/cyxb2017220

She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan[J]. Acta Prataculturae Sinica, 2018, 27(4): 123−130. doi:  10.11686/cyxb2017220
[16] 王宝荣, 曾全超, 安韶山, 等. 黄土高原子午岭林区两种天然次生林植物叶片−凋落叶−土壤生态化学计量特征[J]. 生态学报, 2017, 37(16):5461−5473.

Wang B R, Zeng Q C, An S S, et al. C∶N∶P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling Region of the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(16): 5461−5473.
[17] Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390. doi:  10.1111/j.1461-0248.2010.01532.x
[18] 闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8):807−815. doi:  10.17521/cjpe.2015.0077

Yan B G, Liu G C, Fan B, et al. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 807−815. doi:  10.17521/cjpe.2015.0077
[19] 刘旻霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2):52−58. doi:  10.3969/j.issn.1673-5021.2013.02.010

Liu M X, Zhu K J. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan Plateau[J]. Chinese Journal of Grassland, 2013, 35(2): 52−58. doi:  10.3969/j.issn.1673-5021.2013.02.010
[20] 罗玉珠, 曾太, 东伟, 等. 高寒嵩草草甸植物群落生态化学计量特征研究[J]. 中国草地学报, 2013, 35(3):92−96. doi:  10.3969/j.issn.1673-5021.2013.03.016

Luo Y Z, Zeng T, Dong W, et al. Research of ecological stoichiometry of plant community in alpine kobresia meadow[J]. Chinese Journal of Grassland, 2013, 35(3): 92−96. doi:  10.3969/j.issn.1673-5021.2013.03.016
[21] 金振洲, 欧晓昆, 周跃. 云南元谋干热河谷植被概况[J]. 植物生态学报, 1987, 11(4):308−317.

Jin Z Z, Ou X K, Zhou Y. The general situation of natural vegetation in dry-hot river valley of Yuanmou, Yunnan Province[J]. Chinese Journal of Plant Ecology, 1987, 11(4): 308−317.
[22] 吴建召, 陈爱民, 崔羽, 等. 干热河谷常见植物地表形态特征与泥沙拦截的关系[J]. 应用与环境生物学报, 2018, 24(6):1236−1246.

Wu J Z, Chen A M, Cui Y, et al. Relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1236−1246.
[23] 林勇明, 崔鹏, 王道杰, 等. 泥石流频发区人工新银合欢林群落特征[J]. 中国水土保持科学, 2009, 7(6):63−67. doi:  10.3969/j.issn.1672-3007.2009.06.011

Lin Y M, Cui P, Wang D J, et al. Community characteristic of plantation of Leucaena leucocephala in the area with high-frequency debris flow[J]. Science of Soil and Water Conservation, 2009, 7(6): 63−67. doi:  10.3969/j.issn.1672-3007.2009.06.011
[24] 崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应: 以中国科学院东川泥石流观测研究站为例[J]. 中国水土保持科学, 2005, 3(3):60−64. doi:  10.3969/j.issn.1672-3007.2005.03.012

Cui P, Wang D J, Wei F Q. Model and effect of ecological restoration of dry-hot valley: a case study of the CAS Dongchuan Debris Flow Observation Station[J]. Science of Soil and Water Conservation, 2005, 3(3): 60−64. doi:  10.3969/j.issn.1672-3007.2005.03.012
[25] Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia, 2013, 171(1): 39−50. doi:  10.1007/s00442-012-2396-7
[26] 郭超, 蔡家艳, 金奇, 等. 鄱阳湖湿地优势植物氮磷再吸收[J]. 生态学杂志, 2016, 35(3):692−697.

Guo C, Cai J Y, Jin Q, et al. Nitrogen and phosphorus resorption of six dominant plant species in Poyang Lake wetlands[J]. Chinese Journal of Ecology, 2016, 35(3): 692−697.
[27] 罗绪强, 张桂玲, 杜雪莲, 等. 茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J]. 生态环境学报, 2014, 23(7):1121−1129. doi:  10.3969/j.issn.1674-5906.2014.07.005

Luo X Q, Zhang G L, Du X L, et al. Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan Karst Forest[J]. Ecology and Environmental Sciences, 2014, 23(7): 1121−1129. doi:  10.3969/j.issn.1674-5906.2014.07.005
[28] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi:  10.1038/35046058
[29] Bowman W D, Bahn L, Damm M. Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(2): 144−149. doi:  10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
[30] 朱军涛, 李向义, 张希明, 等. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配[J]. 植物生态学报, 2010, 34(9):1025−1032. doi:  10.3773/j.issn.1005-264x.2010.09.003

Zhu J T, Li X Y, Zhang X M, et al. Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1025−1032. doi:  10.3773/j.issn.1005-264x.2010.09.003
[31] Leonardus V, Stefano M, Amilcare P, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82: 205−220. doi:  10.1890/11-0416.1
[32] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1):52−62. doi:  10.17521/cjpe.2015.0006

Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 52−62. doi:  10.17521/cjpe.2015.0006
[33] 李志安, 林永标, 彭少麟. 华南人工林凋落叶养分及其转移[J]. 应用生态学报, 2000, 11(3):321−326. doi:  10.3321/j.issn:1001-9332.2000.03.001

Li Z A, Lin Y B, Peng S L. Nutrient content in litterfall and its translocation in plantation forests in south China[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 321−326. doi:  10.3321/j.issn:1001-9332.2000.03.001
[34] 王冬梅, 杨惠敏. 4种牧草不同生长期C、N生态化学计量特征[J]. 草业科学, 2011, 28(6):921−925.

Wang D M, Yang H M. Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses[J]. Pratacultural Science, 2011, 28(6): 921−925.
[35] Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. The Journal of Ecology, 1996, 84(4): 597−608. doi:  10.2307/2261481
[36] 刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12):4071−4080.

Liu H W, Liu W D, Wang W, et al. Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing[J]. Acta Ecologica Sinica, 2015, 35(12): 4071−4080.
[37] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1):48−57.

Yan E R, Wang X H, Guo M, et al. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57.
[38] Gusewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2): 243−266. doi:  10.1111/j.1469-8137.2004.01192.x
[39] 赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1):122−128.

Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: a review[J]. Chinese Journal of Ecology, 2009, 28(1): 122−128.
[40] Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models[J]. Ecology, 1994, 75: 418−429. doi:  10.2307/1939545
[41] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67. doi:  10.1016/S0065-2504(08)60016-1
[42] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi:  10.1073/pnas.0403588101