[1] Del Río L A. ROS and RNS in plant physiology: an overview[J]. Journal of Experimental Botany, 2015, 66(10): 2827−2837. doi:  10.1093/jxb/erv099
[2] Foyer C H, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant, Cell and Environment, 2005, 28(8): 1056−1071. doi:  10.1111/pce.2005.28.issue-8
[3] Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6): 300−309. doi:  10.1016/j.tplants.2011.03.007
[4] Inzé A, Vanderauwera S, Suzuki N, et al. A subcellular localization compendium of hydrogen peroxide-induced proteins[J]. Plant, Cell and Environment, 2012, 35(2): 308−320. doi:  10.1111/j.1365-3040.2011.02323.x
[5] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 2014, 65(5): 1229−1240. doi:  10.1093/jxb/ert375
[6] Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490−498. doi:  10.1016/j.tplants.2004.08.009
[7] Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cell and Molecular Life Science, 2000, 57(5): 779−795. doi:  10.1007/s000180050041
[8] Moller I M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species[J]. Annual Review of Plant Physiology Plant Molecular Biology, 2001, 52: 561−591. doi:  10.1146/annurev.arplant.52.1.561
[9] Caverzan A, Passaia G, Rosa S B, et al. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection[J]. Genetics and Molecular Biology, 2012, 35(4): 1011−1019.
[10] Considine M J, Foyer C H. Redox regulation of plant development[J]. Antioxidants & Redox Signaling, 2014, 21: 1305−1326.
[11] Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. The Plant Cell, 2005, 17(1): 268−281. doi:  10.1105/tpc.104.026971
[12] Van Breusegem F, Dat J F. Reactive oxygen species in plant cell death[J]. Plant Physiology, 2006, 141: 384−390. doi:  10.1104/pp.106.078295
[13] Foreman J, Demidchik V, Bothwell J H, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth[J]. Nature, 2003, 422: 442−446. doi:  10.1038/nature01485
[14] Gapper C, Dolan L. Control of plant development by reactive oxygen species[J]. Plant Physiology, 2006, 141(2): 341−345. doi:  10.1104/pp.106.079079
[15] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1): 57−63. doi:  10.1038/nrg2484
[16] Lord C E, Wertman J N, Lane S, et al. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?[J]. BMC Plant Biology, 2011, 11(1): 102. doi:  10.1186/1471-2229-11-102
[17] Woo H H, Orbach M J, Hirsch A M, et al. Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa[J]. The Plant Cell, 1999, 11(12): 2303−2315. doi:  10.1105/tpc.11.12.2303
[18] Colebrook E H, Thomas S G, Phillips A L, et al. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of Experimental Biology, 2014, 217: 67−75.
[19] Mortier V, Wasson A, Jaworek P, et al. Role of LONELY GUY genes in indeterminate nodulation on Medicago truncatula[J]. New Phytologist, 2014, 202(2): 582−593. doi:  10.1111/nph.12681
[20] Hengartner M O. The biochemistry of apoptosis[J]. Nature, 2000, 407: 770−776. doi:  10.1038/35037710
[21] Wang Y, Li Y, Xue H, et al. Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds[J]. Plant Journal, 2015, 81(3): 438−452. doi:  10.1111/tpj.2015.81.issue-3
[22] Deheshi S, Dabiri B, Fan S, et al. Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ros-mediated remodeling[J]. Journal of Neurochemistry, 2015, 133(5): 684−699. doi:  10.1111/jnc.2015.133.issue-5
[23] Chapman J M, Muhlemann J K, Gayomba S R, et al. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses[J]. Chemical Research in Toxicology, 2019, 32(3): 370−397. doi:  10.1021/acs.chemrestox.9b00028
[24] Ali I, Jan M, Wakeel A, et al. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thaliana subjected to bisphenol A exposure[J]. Ecotoxicology and Environmental Safety, 2017, 144: 62−71. doi:  10.1016/j.ecoenv.2017.06.015
[25] Luria G, Rutley N, Lazar I, et al. Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress[J]. Plant Journal, 2019, 98: 942−952. doi:  10.1111/tpj.2019.98.issue-5
[26] Stavridou E, Michailidis M, Gedeon S, et al. Tolerance of transplastomic tobacco plants overexpressing a theta class glutathione fransferase to abiotic and oxidative stresses[J/OL]. Frontiers in Plant Science, 2019, 9 (2019−01−11) [2019−02−01]. https://www.frontiersin.org/articles/10.3389/fpls.2018.01861/full.
[27] Araniti F, Costas-Gil A, Cabeiras-Freijanes L, et al. Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction[J/OL]. PLoS One, 2018,13 (2018−12−26) [2018−12−10]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208802.
[28] Shadel G S, Horvath T L. Mitochondrial ROS signaling in organismal homeostasis[J]. Cell, 2015, 163: 560−569. doi:  10.1016/j.cell.2015.10.001