[1] 唐克丽. 中国土壤侵蚀与水土保持学的特点及展望[J]. 水土保持研究, 1999, 6(2):3−8.

Tang K L. Characteristics and perspectives on scientific discipline of soil erosion and soil and water conservation in China[J]. Research of Soil and Water Conservation, 1999, 6(2): 3−8.
[2] 刘贤赵, 黄明斌, 康绍忠. 黄土沟壑区小流域水土保持减水效益分析[J]. 应用基础与工程科学学报, 2005, 8(4):354−361.

Liu X Z, Huang M B, Kang S Z. Analysis on the benefits of water reduction by soil and water conservation for small watersheds in loess gully region[J]. Journal of Basic Science and Engineering, 2005, 8(4): 354−361.
[3] 甘卓亭, 叶佳, 周旗, 等. 模拟降雨下草地植被调控坡面土壤侵蚀过程[J]. 生态学报, 2010, 30(9):2387−2396.

Gan Z T, Ye J, Zhou Q, et al. Effects of grass vegetations on the processes of soil erosion over slope lands in simulated rainfalls[J]. Acta Ecologica Sinica, 2010, 30(9): 2387−2396.
[4] 李坤, 姚文艺, 肖培青, 等. 植被对土壤入渗和地表产流过程的影响研究进展[J]. 中国水土保持, 2017(3):27−30. doi:  10.3969/j.issn.1000-0941.2017.03.011

Li K, Yao W Y, Xiao P Q, et al. Influence of vegetation on soil infiltration and surface runoff[J]. Soil and Water Conservation in China, 2017(3): 27−30. doi:  10.3969/j.issn.1000-0941.2017.03.011
[5] 李兆松, 王兵, 李盼盼, 等. 氮添加条件下白羊草种群及近地表生物结皮对土壤入渗性能的影响[J]. 山地学报, 2018, 36(3):354−363.

Li Z S, Wang B, Li P P, et al. Effects of bothriochloa ischaemum community and near soil surface biological crust on the soil infiltration capacity based on nitrogen addition[J]. Mountain Research, 2018, 36(3): 354−363.
[6] 曹斌挺. 黄土丘陵沟壑区退耕坡面不同植物群落的土壤侵蚀特征[D]. 杨凌: 西北农林科技大学, 2016.

Cao B T. Characteristics of soil erosion of different plant communities converted from slope cropland in the Loess Plateau[D]. Yangling: Northwest A&F University, 2016.
[7] 李盼盼, 王兵, 刘国彬, 等. 氮添加对白羊草种群及土壤特征的影响[J]. 中国水土保持科学, 2017, 15(2):35−42.

Li P P, Wang B, Liu G B, et al. Effects of nitrogen addition on the population characteristics of bothriochloa ischaemum and soil properties[J]. Science of Soil and Water Conservation, 2017, 15(2): 35−42.
[8] 张宽地, 王光谦, 孙晓敏, 等. 模拟植被覆盖条件下坡面流水动力学特性[J]. 水科学进展, 2014, 25(6):825−834.

Zhang K D, Wang G Q, Sun X M, et al. Hydraulic characteristic of overland flow under different vegetation coverage[J]. Advances in Water Science, 2014, 25(6): 825−834.
[9] 任海, 王俊, 陆宏芳. 恢复生态学的理论与研究进展[J]. 生态学报, 2014, 34(15):4117−4124.

Ren H, Wang J, Lu H F. Theories and research advances of restoration ecology[J]. Acta Ecologica Sinica, 2014, 34(15): 4117−4124.
[10] 李勉, 姚文艺, 李占斌. 黄土高原草本植被水土保持作用研究进展[J]. 地球科学进展, 2005, 20(1):74−80. doi:  10.3321/j.issn:1001-8166.2005.01.013

Li M, Yao W Y, Li Z B. The effect of grassland vegetation for conserving soil and water on Loess Plateau[J]. Advances in Earth Science, 2005, 20(1): 74−80. doi:  10.3321/j.issn:1001-8166.2005.01.013
[11] 李强, 李占斌, 鲁克新, 等. 黄土丘陵区不同植被格局产流产沙试验研究[J]. 中国农村水利水电, 2008, 30(4):102−104.

Li Q, Li Z B, Lu K X, et al. Experimental research on the runoff and sediment production in loess hilly gully region with different vegetation patterns[J]. China Rural Water and Hydropower, 2008, 30(4): 102−104.
[12] 闵俊杰. 不同植被格局下人工模拟降雨对坡面侵蚀的影响[D]. 南京: 南京林业大学, 2012.

Min J J. Effects of simulated rainfall on slope erosion under different vegetation patterns[D]. Nanjing: Nanjing Forestry University, 2012.
[13] 李小雁. 干旱地区土壤−植被−水文耦合、响应与适应机制[J]. 中国科学: 地球科学, 2011, 41(12):1721−1730.

Li X Y. Soil-vegetation-hydrological coupling, response and adaptation mechanism in arid areas[J]. Science in China: Earth Science, 2011, 41(12): 1721−1730.
[14] 韩鹏, 李秀霞. 黄河流域土壤侵蚀及植被水保效益研究[J]. 应用基础与工程科学学报, 2008, 16(2):181−190. doi:  10.3969/j.issn.1005-0930.2008.02.004

Han P, Li X X. Study on soil erosion and vegetation effect on soil conservation in the Yellow River Basin[J]. Journal of Basic Science & Engineering, 2008, 16(2): 181−190. doi:  10.3969/j.issn.1005-0930.2008.02.004
[15] 汪有科, 刘宝元, 焦菊英. 恢复黄土高原林草植被及盖度的前景[J]. 水土保持通报, 1992, 12(2):55−60.

Wang Y K, Liu B Y, Jiao J Y. Perspective of recovering the vegetation and cover percentage of forest and grass on the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1992, 12(2): 55−60.
[16] 程圣东. 黄土区植被格局对坡沟—流域侵蚀产沙的影响研究[D]. 西安: 西安理工大学, 2016.

Cheng S D. The effect of vegetation pattern on erosion and sediment yield of slope-gully system and watershed on loess area[D]. Xi’an: Xi’an University of Technology, 2016.
[17] 苏远逸, 李鹏, 李占斌, 等. 坡面植被格局对坡沟系统能量调控及水沙响应关系的影响[J]. 水土保持学报, 2017, 31(5):32−39.

Su Y Y, Li P, Li Z B, et al. Effects of slope vegetation patterns on energy regulation and water-sediment response relations in slope-gully system[J]. Journal of Soil and Water Conservation, 2017, 31(5): 32−39.
[18] 张霞, 李鹏, 李占斌, 等. 坡面草带分布对坡沟水土流失的防控作用及其优化配置[J]. 农业工程学报, 2019, 35(7):122−128. doi:  10.11975/j.issn.1002-6819.2019.07.015

Zhang X, Li P, Li Z B, et al. Prevention and control of grass strips distribution on soil and water loss and its optimal configuration of slope-gully system[J]. Journal of Soil and Water Conservation, 2019, 35(7): 122−128. doi:  10.11975/j.issn.1002-6819.2019.07.015
[19] 秦伟, 曹文洪, 郭乾坤, 等. 植被格局对侵蚀产沙影响的研究评述[J]. 生态学报, 2017, 37(14):4905−4912.

Qin W, Cao W H, Guo Q K, et al. Review of the effects of vegetation patterns on soil erosion and sediment yield[J]. Acta Ecologica Sinica, 2017, 37(14): 4905−4912.
[20] 曹奇光. 晋西黄土区人工刺槐林地土壤水分特征及合理密度研究[D]. 北京: 北京林业大学, 2007.

Cao Q G. Study on soil water characteristic and suitable density of artifical Robinia psedoaeacio on slope of west of Shanxi Province[D]. Beijing: Beijing Forestry University, 2007.
[21] 傅伯杰, 徐延达, 吕一河. 景观格局与水土流失的尺度特征与耦合方法[J]. 地球科学进展, 2010, 25(7):673−681.

Fu B J, Xu Y D, Lü Y H. Scale characteristics and coupled research of landscape pattern and soil and water loss[J]. Advances in Earth Science, 2010, 25(7): 673−681.
[22] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局[J]. 生态学报, 2016, 36(2):377−386.

Wang Y H, Zhao Y G, Li L, et al. Distribution patterns and spatial variability of vegetation and biocrusts in revegetated lands in different rainfall zones of the Loess Plateau region, China[J]. Acta Ecologica Sinica, 2016, 36(2): 377−386.
[23] 肖笃宁, 布仁仓, 李秀珍. 生态空间理论与景观异质性[J]. 生态学报, 1997, 17(5):3−11.

Xiao D N, Bu R C, Li X Z. Spatial ecology and landscape heterogeneity[J]. Acta Ecologica Sinica, 1997, 17(5): 3−11.
[24] 温永福, 高鹏, 穆兴民, 等. 野外模拟降雨条件下径流小区产流产沙试验研究[J]. 水土保持研究, 2018, 25(1):23−29.

Wen Y F, Gao P, Mu X M, et al. Experimental study on runoff and sediment yield in runoff plot under field simulated rainfall condition[J]. Research of Soil and Water Conservation, 2018, 25(1): 23−29.
[25] 王林华, 马波, 吴发启. 黄土区不同生长期大豆坡耕地的入渗特征[J]. 中国水土保持科学, 2015, 13(4):15−24. doi:  10.3969/j.issn.1672-3007.2015.04.003

Wang L H, Ma B, Wu F Q. Infiltration characteristics in sloping farmland at different growth stages of soybean (Glycine max L.) in loess area[J]. Science of Soil and Water Conservation, 2015, 13(4): 15−24. doi:  10.3969/j.issn.1672-3007.2015.04.003
[26] 陈洪松, 邵明安, 张兴昌, 等. 野外模拟降雨条件下坡面降雨入渗、产流试验研究[J]. 水土保持学报, 2005, 19(2):5−8. doi:  10.3321/j.issn:1009-2242.2005.02.002

Chen H S, Shao M A, Zhang X C, et al. Field experiment on hillslope rainfall infiltration and runoff under simulated rainfall conditions[J]. Journal of Soil and Water Conservation, 2005, 19(2): 5−8. doi:  10.3321/j.issn:1009-2242.2005.02.002
[27] Laws J O. Measurements of the fall-velocity of water -drops and raindrops[J]. John Wiley & Sons, Ltd, 1941, 22(3): 709−721.
[28] 牟金泽. 雨滴速度计算公式[J]. 中国水土保持, 1983, 35(3):40−41.

Mou J Z. Formula for calculating velocity of raindrops[J]. Soil and Water Conservation in China, 1983, 35(3): 40−41.
[29] 吴光艳, 吴发启, 尹武君, 等. 陕西杨凌天然降雨雨滴特性研究[J]. 水土保持研究, 2011, 18(1):48−51.

Wu G Y, Wu F Q, Yin W J, et al. Study on characteristics of natural rainfall in Yangling, Shaanxi Province[J]. Research of Soil and Water Conservation, 2011, 18(1): 48−51.
[30] 李坤, 姚文艺, 肖培青, 等. 黄丘区自然草地对坡面土壤入渗的影响机制[J]. 人民黄河, 2017, 39(6):82−85, 98. doi:  10.3969/j.issn.1000-1379.2017.06.018

Li K, Yao W Y, Xiao P Q, et al. Effects of vegetation on slope soil infiltration in the loess hilly region[J]. Yellow River, 2017, 39(6): 82−85, 98. doi:  10.3969/j.issn.1000-1379.2017.06.018
[31] 张冠华. 茵陈蒿群落分布格局对坡面侵蚀及坡面流水动力学特性的影响[D]. 杨凌: 西北农林科技大学, 2012.

Zhang G H. Influence of patterned Artemisia capillaris on slope erosion and overland flow hydrodynamic characteristics[D]. Yangling: Northwest A&F University, 2012.
[32] 魏霞, 李勋贵, 李占斌, 等. 植被覆盖下黄土凸型复合坡面水流特征[J]. 农业工程学报, 2014, 30(22):147−154. doi:  10.3969/j.issn.1002-6819.2014.22.018

Wei X, Li X G, Li Z B, et al. Flow characteristics of convex composite slopes of loess under vegetation cover[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 147−154. doi:  10.3969/j.issn.1002-6819.2014.22.018
[33] Ludwig J A, Tongway D J, Marsden S G. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia[J]. Catena, 1999, 37(1): 257−273.
[34] Muñoz-Robles C, Tighe M, Reid N, et al. A two-step up-scaling method for mapping runoff and sediment production from pasture and woody encroachment on semi-arid hillslopes[J]. Ecohydrology, 2013, 6(1): 83−93. doi:  10.1002/eco.283
[35] Bautista S, Mayor G, Bourakhouada R J, et al. Plant spatial pattern predicts hillslope runoff and erosion in a semiarid mediterranean landscape[J]. Ecosystems, 2007, 10(6): 987−998. doi:  10.1007/s10021-007-9074-3
[36] 沈中原. 坡面植被格局对水土流失影响的实验研究[D]. 西安: 西安理工大学, 2006.

Shen Z Y. Study on the effect of vegetation slope pattern on soil and water loss[D]. Xi’an: Xi’an University of Technology, 2006.
[37] 马勇勇, 李占斌, 任宗萍, 等. 草带布设位置对坡沟系统水文连通性的影响[J]. 农业工程学报, 2018, 34(8):170−176. doi:  10.11975/j.issn.1002-6819.2018.08.022

Ma Y Y, Li Z B, Ren Z P, et al. Effect of different positions of grass strips on hydrological connectivity in slope-gully system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 170−176. doi:  10.11975/j.issn.1002-6819.2018.08.022
[38] 曹梓豪, 赵清贺, 左宪禹, 等. 基于坡面水文连通性的黄河下游河岸缓冲带植被格局优化[J]. 应用生态学报, 2018, 29(3):739−747.

Cao Z H, Zhao Q H, Zuo X Y, et al. Optimizing vegetation pattern for the riparian buffer zone along the lower Yellow River based on slope hydrological connectivity[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 739−747.
[39] 游珍, 李占斌. 坡面植被对径流的减流减沙作用机理及试验研究[J]. 泥沙研究, 2011, 6(3):59−62.

You Z, Li Z B. Mechanism and experiment of vegetation on slope to reduce runoff and sediment[J]. Journal of Sediment Research, 2011, 6(3): 59−62.