[1] 史劲亭, 袁非牛, 夏雪. 视频烟雾检测研究进展[J]. 中国图象图形学报, 2018, 23(3):303−322. doi:  10.11834/jig.170439

Shi J T, Yuan F N, Xia X. Video smoke detection: a literature survey[J]. Journal of Image and Graphics, 2018, 23(3): 303−322. doi:  10.11834/jig.170439
[2] Çetin A E, Dimitropoulos K, Gouverneur B, et al. Video fire detection – review[J]. Digital Signal Processing, 2013, 23(6): 1827−1843. doi:  10.1016/j.dsp.2013.07.003
[3] 张斌, 魏维, 何冰倩. 基于多特征融合的早期野火烟雾检测[J]. 成都信息工程大学学报, 2018, 33(4):408−412.

Zhang B, Wei W, He B Q. An early wildfire smoke detection method based on multi-features fusion[J]. Journal of Chengdu University of Information Technology, 2018, 33(4): 408−412.
[4] 林宏, 刘志刚, 赵同林, 等. 基于视频的林火烟雾识别算法研究[J]. 安全与环境学报, 2013, 13(2):210−214. doi:  10.3969/j.issn.1009-6094.2013.02.045

Lin H, Liu Z G, Zhao T L, et al. Improved algorithm for smoking identification of the forest fire based on the video survey[J]. Journal of Safety and Environment, 2013, 13(2): 210−214. doi:  10.3969/j.issn.1009-6094.2013.02.045
[5] 周忠, 赵亚琴, 唐于维一, 等. 基于时空特征的林火视频烟雾区域提取[J]. 中国农机化学报, 2016, 37(2):196−199.

Zhou Z, Zhao Y Q, Tang Y W Y, et al. Segmentation of forest fire video smoke region based on the temporal-spatial features[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(2): 196−199.
[6] Liu J L, Zhao H W. Research of flame detection on visual saliency method[J]. Journal of Multimedia, 2014, 9(6): 781−788.
[7] 叶秋冬, 王越. 基于视频的烟雾检测预警系统在森林防火系统中的应用[J]. 计算机应用与软件, 2012, 29(1):270−272, 293. doi:  10.3969/j.issn.1000-386X.2012.01.076

Ye Q D, Wang Y. Application of video-based smoke detection and early warning system to forest fire prevention system[J]. Computer Applications and Software, 2012, 29(1): 270−272, 293. doi:  10.3969/j.issn.1000-386X.2012.01.076
[8] 刘恺, 刘湘, 常丽萍, 等. 基于YUV颜色空间和多特征融合的视频烟雾检测[J]. 传感技术学报, 2019, 32(2):237−243.

Liu K, Liu X, Chang L P, et al. Video smoke detection based on YUV color space and multiple feature fusion[J]. Chinese Journal of Sensors and Actuators, 2019, 32(2): 237−243.
[9] Tian H D, Li W Q, Ogunbona P O, et al. Detection and separation of smoke from single image frames[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1164−1177. doi:  10.1109/TIP.2017.2771499
[10] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1): 51−59. doi:  10.1016/0031-3203(95)00067-4
[11] Yuan F N. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal, 2011, 46(3): 132−139. doi:  10.1016/j.firesaf.2011.01.001
[12] 杨秋霞, 罗传文. 基于LBP和稀疏表示的林火烟雾图像识别研究[J]. 安徽农业科学, 2014, 42(34):12342−12346. doi:  10.3969/j.issn.0517-6611.2014.34.116

Yang Q X, Luo C W. Forest fire smoke recognition based on local binary patterns and sparse representation[J]. Journal of Anhui Agricultural Sciences, 2014, 42(34): 12342−12346. doi:  10.3969/j.issn.0517-6611.2014.34.116
[13] 李红娣, 袁非牛. 采用金字塔纹理和边缘特征的图像烟雾检测[J]. 中国图象图形学报, 2015, 20(6):772−780. doi:  10.11834/jig.20150606

Li H D, Yuan F N. Image based smoke detection using pyramid texture and edge features[J]. Journal of Image and Graphics, 2015, 20(6): 772−780. doi:  10.11834/jig.20150606
[14] 兰久强, 刘金清, 刘引, 等. 基于颜色和纹理特征的林火烟雾识别[J]. 计算机系统应用, 2016, 25(3):101−106.

Lan J Q, Liu J Q, Liu Y, et al. Forest fire smoke recognition based on color and texture features[J]. Computer Systems & Applications, 2016, 25(3): 101−106.
[15] Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971−987. doi:  10.1109/TPAMI.2002.1017623
[16] Yuan F N, Xia X, Shi J T. Holistic learning-based high-order feature descriptor for smoke recognition[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2019, 17(2): 1940005. doi:  10.1142/S0219691319400058
[17] Prema C E, Vinsley S S, Suresh S. Multi feature analysis of smoke in YUV color space for early forest fire detection[J]. Fire Technology, 2016, 52(5): 1319−1342. doi:  10.1007/s10694-016-0580-8
[18] Dimitropoulos K, Barmpoutis P, Grammalidis N. Higher order linear dynamical systems for smoke detection in video surveillance applications[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1143−1154. doi:  10.1109/TCSVT.2016.2527340
[19] Ko B C, Kwak J Y, Nam J Y. Wildfire smoke detection using temporospatial features and random forest classifiers[J]. Optical Engineering, 2012, 51(1): 017208. doi:  10.1117/1.OE.51.1.017208
[20] Park J O, Ko B C, Nam J Y, et al. Wildfire smoke detection using spatiotemporal bag-of-features of smoke[C]//2013 IEEE Workshop on Applications of Computer Vision. Tampa, FL, USA: IEEE, 2013: 200−205.
[21] 张建明, 黄继风. 基于视频的实时烟雾检测算法[J]. 计算机应用与软件, 2016, 33(12):248−252. doi:  10.3969/j.issn.1000-386x.2016.12.059

Zhang J M, Huang J F. Real-time smoke detection algorithm based on video[J]. Computer Applications and Software, 2016, 33(12): 248−252. doi:  10.3969/j.issn.1000-386x.2016.12.059
[22] 罗一涵, 刘妍妍, 陈科. 探测信噪比计算方法及原理综述[J]. 电声技术, 2016, 40(6):37−43, 57.

Luo Y H, Liu Y Y, Chen K. Computing methods and principles of detective SNR[J]. Audio Engineering, 2016, 40(6): 37−43, 57.
[23] 贺国旗, 陈向奎, 韩泉叶, 等. 一种自动提高图像信噪比的方法[J]. 计算机技术与发展, 2015, 25(12):60−63.

He G Q, Chen X K, Han Q Y, et al. A method of automatically improving SNR of image[J]. Computer Technology and Development, 2015, 25(12): 60−63.
[24] http://signal.ee.bilkent.edu.tr/VisiFire/Demo/ForestSmoke/.
[25] 郑怀兵, 翟济云. 基于视频分析的森林火灾烟雾检测方法[J]. 南京理工大学学报(自然科学版), 2015, 39(6):686−691, 710.

Zheng H B, Zhai J Y. Forest fire smoke detection based on video analysis[J]. Journal of Nanjing University of Science and Technology, 2015, 39(6): 686−691, 710.
[26] 何大超, 娄小平, 唐辉. 基于动态特性的实时视频烟雾检测[J]. 计算机应用与软件, 2014, 31(2):201−204. doi:  10.3969/j.issn.1000-386x.2014.02.054

He D C, Lou X P, Tang H. Dynamic features based real-time video smoke detection[J]. Computer Applications and Software, 2014, 31(2): 201−204. doi:  10.3969/j.issn.1000-386x.2014.02.054
[27] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3):123−124. doi:  10.3778/j.issn.1002-8331.2011.03.037

Feng G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123−124. doi:  10.3778/j.issn.1002-8331.2011.03.037