[1] 游先祥. 应用彩红外航空照片对森林受污染危害程度的动态研究[J]. 北京林业大学学报, 1986, 8(2):49−72.You X X. Using color infra-red aerial photographs to dynamically monitor polluted forests[J]. Journal of Beijing Forestry University, 1986, 8(2): 49−72.
[2] 游先祥, 杨晓明. 应用遥感信息复合方法的森林分类和动态监测研究[J]. 环境遥感, 1995, 10(2):97−106.You X X, Yang X M. A study on forest classification and dynamic monitoring by using remote sensing information[J]. Remote Sensing of Environment China, 1995, 10(2): 97−106.
[3] 赵宪文. 林业遥感定量估测[M]. 北京: 中国林业出版社, 1997.Zhao X W. Quantitative estimation of remote sensing in forestry[M]. Beijing: China Forestry Publishing House, 1997.
[4] Gu C, Clevers J G P W, Xiao L, et al. Predicting forest height using the GOST, Landsat 7 ETM+, and airborne LiDAR for sloping terrains in the Greater Khingan Mountains of China[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2018, 137: 97−111.
[5] 李增元, 陈尔学, 高志海, 等. 中国林业遥感技术与应用发展现状及建议[J]. 中国科学院院刊, 2013, 28(Z1):132−144.Li Z Y, Chen E X, Gao Z H, et al. Current development status and proposals for national forest remote sensing techniques and applications[J]. Bulletin of the Chinese Academy of Sciences, 2013, 28(Z1): 132−144.
[6] 李小文. 定量遥感的发展与创新[J]. 河南大学学报(自然科学版), 2005, 35(4):49−56. doi: 10.3969/j.issn.1003-4978.2005.04.012Li X W. Retrospect, prospect and innovation in quantitative remote sensing[J]. Journal of Henan University (Natural Science), 2005, 35(4): 49−56. doi: 10.3969/j.issn.1003-4978.2005.04.012
[7] 赵宪文, 李崇贵, 斯林, 等. 基于信息技术的森林资源调查新体系[J]. 北京林业大学学报, 2002, 24(5):147−155. doi: 10.3321/j.issn:1000-1522.2002.05.028Zhao X W, Li C G, Si L, et al. Building a new system of forest resources inventory by information technology[J]. Journal of Beijing Forestry University, 2002, 24(5): 147−155. doi: 10.3321/j.issn:1000-1522.2002.05.028
[8] 覃先林, 张子辉, 李增元. 一种利用HJ-1B红外相机数据自动识别林火的方法[J]. 遥感技术与应用, 2010, 25(5):700−706. doi: 10.11873/j.issn.1004-0323.2010.5.700Qin X L, Zhang Z H, Li Z Y. An automatic forest fires identification method using HJ-1BIRS data[J]. Remote Sensing Technology & Application, 2010, 25(5): 700−706. doi: 10.11873/j.issn.1004-0323.2010.5.700
[9] 武红敢, 曾庆伟. 林业生物灾害的监测调查技术研究进展[J]. 灾害学, 2008, 23(4):106−109. doi: 10.3969/j.issn.1000-811X.2008.04.022Wu H G, Zeng Q W. Technological development of forest pest monitoring[J]. Journal of Catastrophology, 2008, 23(4): 106−109. doi: 10.3969/j.issn.1000-811X.2008.04.022
[10] 覃先林, 李增元, 易浩若, 等. 基于ENVISAT-MERIS数据的过火区制图方法研究[J]. 遥感技术与应用, 2008, 23(1):1−6. doi: 10.11873/j.issn.1004-0323.2008.1.1Qin X L, Li Z Y, Yi H R, et al. Studying on burned scar mapping using ENVISat-MERIS data[J]. Remote Sensing Technology & Application, 2008, 23(1): 1−6. doi: 10.11873/j.issn.1004-0323.2008.1.1
[11] 赵宪文. 面向21世纪的中国林业遥感[J]. 中国工程科学, 1999, 1(3):16−21. doi: 10.3969/j.issn.1009-1742.1999.03.004Zhao X W. Orienting the forest remote sensing of the 21st century in China[J]. Engineering Science, 1999, 1(3): 16−21. doi: 10.3969/j.issn.1009-1742.1999.03.004
[12] 唐守正. 关于两相抽样面积蓄积统计的原则[J]. 林业资源管理, 1996(4):18−22.Tang S Z. Rules on area and volume statistics using double sampling[J]. Forest Resources Management, 1996(4): 18−22.
[13] 徐冠华, 田国良, 王超, 等. 遥感信息科学的进展和展望[J]. 地理学报, 1996, 51(5):385−397. doi: 10.3321/j.issn:0375-5444.1996.05.001Xu G H, Tian G L, Wang C, et al. Remote sensing information science: progress and prospect[J]. Acta Geographica Sinica, 1996, 51(5): 385−397. doi: 10.3321/j.issn:0375-5444.1996.05.001
[14] 游先祥. 遥感原理及在资源环境中的应用[M]. 北京: 中国林业出版社, 2003.You X X. Remote sensing principles and its applications in resource and environment[M]. Beijing: China Forestry Publishing House, 2003.
[15] 陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6):18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004
[16] 赵宪文, 周万村, 易浩若. 森林火灾遥感监测评价: 理论及技术应用[M]. 北京: 中国林业出版社, 1995.Zhao X W, Zhou W C, Yi H R. Monitoring and assessment of remote sensing on forest fire-theory and technology application[M]. Beijing: China Forestry Publishing House, 1995.
[17] 谢卫莹. 高光谱遥感影像高精度分类方法研究[D]. 西安: 西安电子科技大学, 2017.Xie W Y. Research on high accuracy classification for hyperspectral remote sensing imagery[D]. Xi ’an: Xidian University, 2017.
[18] 谭炳香, 李增元, 陈尔学, 等. Hyperion高光谱数据森林郁闭度定量估测研究[J]. 北京林业大学学报, 2006, 28(3):95−101. doi: 10.3321/j.issn:1000-1522.2006.03.017Tan B X, Li Z Y, Chen E X, et al. Estimating forest crown closure using Hyperion hyperspectral data[J]. Journal of Beijing Forestry University, 2006, 28(3): 95−101. doi: 10.3321/j.issn:1000-1522.2006.03.017
[19] 蒋云姣, 韩轶群, 李明阳, 等. 紫金山乔木多样性遥感估测及空间分布[J]. 浙江农林大学学报, 2015, 32(4):509−515. doi: 10.11833/j.issn.2095-0756.2015.04.003Jiang Y J, Han Y Q, Li M Y, et al. Remote sensing based estimation and spatial distribution of tree species diversity for Zijin Mountain[J]. Journal of Zhejiang A&F University, 2015, 32(4): 509−515. doi: 10.11833/j.issn.2095-0756.2015.04.003
[20] 沈亲, 邓槿, 刘旭升, 等. 基于遥感温度植被干旱指数的小蠹虫害预警[J]. 农业工程学报, 2018, 34(9):167−174. doi: 10.11975/j.issn.1002-6819.2018.09.020Shen Q, Deng J, Liu X S, et al. Prediction of bark beetles pests based on temperature vegetation dryness index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 167−174. doi: 10.11975/j.issn.1002-6819.2018.09.020
[21] 梁顺林, 程洁, 贾坤, 等. 陆表定量遥感反演方法的发展新动态[J]. 遥感学报, 2016, 20(5):875−898.Liang S L, Cheng J, Jia K, et al. Recent progress in land surface quantitative remote sensing[J]. Journal of Remote Sensing, 2016, 20(5): 875−898.
[22] 李小文, 王锦地. 植被光学遥感模型与植被结构参数化[M]. 北京: 科学出版社, 1995Li X W, Wang J D. Plant photon remote sensing model and parameterizing of plant structure[M]. Beijing: Science Press, 1995.
[23] 柳钦火, 辛晓洲, 唐娉, 等. 定量遥感模型、应用及不确定性研究[M]. 北京: 科学出版社, 2010.Liu Q H, Xin X Z, Tang P, et al. Modeling, application and uncertainty of quantitative remote sensing[M]. Beijing: Science Press, 2010.
[24] Liang S L. Quantitative remote sensing of land surfaces[M]. Hoboken: John Wiley and Sons, Inc., 2004.
[25] 柳钦火, 唐勇, 李静, 等. 遥感辐射传输建模与反演研究进展[J]. 遥感学报, 2009, 13(增刊 1):168−182.Liu Q H, Tang Y, Li J, et al. Research progress on remote sensing radiative transfer modellling and inversion[J]. Journal of Remote Sensing, 2009, 13(Suppl. 1): 168−182.
[26] 李晓松, 高志海, 李增元, 等. 基于高光谱混合像元分解的干旱地区稀疏植被覆盖度估测[J]. 应用生态学报, 2010, 21(1):152−158.Li X S, Gao Z H, Li Z Y, et al. Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 152−158.
[27] 汪小钦, 江洪, 傅银贞. 森林叶面积指数遥感研究进展[J]. 福州大学学报(自然科学版), 2009, 37(6):822−828.Wang X Q, Jiang H, Fu Y Z. The progress of the forest LAI estimation from remote sensing data[J]. Journal of Fuzhou University (Natural Science Edition), 2009, 37(6): 822−828.
[28] Li X, Strahler A H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience & Remote Sensing, 1992, 30(2): 276−292.
[29] Verhoef W, Jia L, Xiao Q, et al. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(6): 1808−1822.
[30] Jin Y Q. Electromagnetic scattering modelling for quantitative remote sensing[M]. Singapore: World Scientific, 1993.
[31] 柳钦火, 阎广建, 焦子锑, 等. 发展几何光学遥感建模理论, 推动定量遥感科学前行—深切缅怀李小文院士[J]. 遥感学报, 2019, 23(1):1−10.Liu Q H, Yan G J, Jiao Z T, et al. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development: in memory of academician Li Xiaowen[J]. Journal of Remote Sensing, 2019, 23(1): 1−10.
[32] Huang H G, Qin W, Liu Q. RAPID: a radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132(10): 221−237.
[33] Huang H G, Wynne R H. Simulation of lidar waveforms with a time-dependent radiosity algorithm[J]. Canadian Journal of Remote Sensing, 2013, 39(Suppl. 1): 126−138.
[34] Huang H G, Zhang Z Y, Ni W J, et al. Extending RAPID model to simulate forest microwave backscattering[J]. Remote Sensing of Environment, 2018, 217(10): 272−291.
[35] 李增元, 覃先林, 高志海, 等. 高分遥感林业应用研究[J]. 卫星应用, 2018(11):61−65. doi: 10.3969/j.issn.1674-9030.2018.11.015Li Z Y, Qin X L, Gao Z H, et al. Application research of high resolution remote sensing in forestry[J]. Satellite Application, 2018(11): 61−65. doi: 10.3969/j.issn.1674-9030.2018.11.015
[36] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1): 185−201. doi: 10.1016/S0034-4257(01)00295-4
[37] Alijafar M, Wout V, Massimo M, et al. Modeling top of atmosphere radiance over heterogeneous non-lambertian rugged terrain[J]. Remote Sensing, 2015, 7(6): 8019−8044. doi: 10.3390/rs70608019
[38] 柳钦火, 曹彪, 曾也鲁, 等. 植被遥感辐射传输建模中的异质性研究进展[J]. 遥感学报, 2016, 20(5):933−945.Liu Q H, Cao B, Zeng Y L, et al. Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. Journal of Remote Sensing, 2016, 20(5): 933−945.
[39] 高峰, 李小文, 夏宗国, 等. 基于知识的分阶段不确定性多角度遥感反演[J]. 中国科学(D辑), 1998, 28(4):346−350.Gao F, Li X W, Xia Z G, et al. Multi-stage uncertainty inversion of multi-angle remote sensing based on prior information[J]. Science in China (Series D), 1998, 28(4): 346−350.
[40] Sader S A, Stone T A, Joyce A T. Remote sensing of tropical forests: an overview of research and applications using non-photographic sensors[J]. Photogrammetric Engineering and Remote Sensing, 1990, 56(10): 1343−1351.
[41] King D J. Airborne remote sensing in forestry: sensors, analysis and applications[J]. Forestry Chronicle, 2000, 76(6): 25−42.
[42] Su Y, Guan H, Hu T, et al. The integration of UAV and backpack lidar systems for forest inventory[C]//IEEE. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018.
[43] Zou X, Cheng M, Wang C, et al. Tree classification in complex forest point clouds based on deep learning[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2360−2364. doi: 10.1109/LGRS.2017.2764938
[44] Ball J E, Anderson D T, Chan C S. A comprehensive survey of deep learning in remote sensing: theories, tools and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4). DOI: 10.1117/1.JRS.11.042609.
[45] 吴楠, 李增元, 廖声熙, 等. 国内外林业遥感应用研究概况与展望[J]. 世界林业研究, 2017, 30(6):34−40.Wu N, Li Z Y, Liao S X, et al. Current situation and prospect of research on application of remote sensing to forestry[J]. World Forestry Research, 2017, 30(6): 34−40.
[46] Khare S, Latifi H, Rossi S. Forest beta-diversity analysis by remote sensing: how scale and sensors affect the Rao ’s Q index[J/OL]. Ecological Indicators, 2019, 106 [2019−08−11]. http: //doi.org/10.1016/j.ecolind.2019.105520.
[47] Ferreira M P, Féret J-B, Grau E, et al. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy[J]. Remote Sensing of Environment, 2018, 211(6): 276−291.
[48] Fischer R, Knapp N, Bohn F, et al. The relevance of forest structure for biomass and productivity in temperate forests: new perspectives for remote sensing[J]. Surveys in Geophysics, 2019, 40(4): 709−734. doi: 10.1007/s10712-019-09519-x
[49] Senf C, Seidl R, Hostert P. Remote sensing of forest insect disturbances: current state and future directions[J]. International Journal of Applied Earth Observations and Geoinformation, 2017, 60(8): 49−60.
[50] Widlowski J L, Taberner M, Pinty B, et al. Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models[J/OL]. Journal of Geophysical Research, 2007, 112(9): D09111 [2019−08−15]. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006JD007821.
[51] Jacquemoud S, Baret F. Prospect: a model of leaf optical properties spectra[J]. Remote Sensing of Environment, 1990, 34(2): 75−91. doi: 10.1016/0034-4257(90)90100-Z
[52] Senior T B A, Sarabandi K, Ulaby F T. Measuring and modeling the backscattering cross section of a leaf[J]. Radio Science, 1987, 22(6): 1109−1116. doi: 10.1029/RS022i006p01109
[53] Dawson T P, Curran P J, Plummer S E. Liberty: modeling the effects of leaf biochemical concentration on reflectance spectra[J]. Remote Sensing of Environment, 1998, 65(1): 50−60. doi: 10.1016/S0034-4257(98)00007-8
[54] Karam M A, Fung A K. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation[J]. International Journal of Remote Sensing, 1988, 9(6): 1109−1134. doi: 10.1080/01431168808954918
[55] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the suns glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838−850. doi: 10.1364/JOSA.44.000838
[56] Liang S, Townshend J R G. A modified Hapke model for soil bidirectional reflectance[J]. Remote Sensing of Environment, 1996, 55(55): 1−10.
[57] Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(1): 90−101.
[58] Verhoef W, Bach H. Simulation of sentinel-3 images by four-stream surface-atmosphere radiative transfer modeling in the optical and thermal domains[J]. Remote Sensing of Environment, 2012, 120(10): 197−207.
[59] Leblanc S G, Chen J M. A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations[J]. Remote Sensing Reviews, 2000, 19(1−4): 293−305. doi: 10.1080/02757250009532423
[60] Shabanov N V, Knyazikhin Y, Baret F, et al. Stochastic modeling of radiation regime in discontinuous vegetation canopies[J]. Remote Sensing of Environment, 2000, 74(1): 125−144. doi: 10.1016/S0034-4257(00)00128-0
[61] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357−364. doi: 10.1029/RS013i002p00357
[62] Ulaby F T, Sarabandi K, Mcdonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7): 1223−1253. doi: 10.1080/01431169008955090
[63] Gastellu-Etchegorry J P, Lauret N, Yin T, et al. Dart: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(6): 2640−2649.
[64] Qi J, Xie D, Yin T, et al. Less: large-scale remote sensing data and image simulation framework over heterogeneous 3D scenes[J]. Remote Sensing of Environment, 2019, 221(2): 695−706.
[65] 谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(增刊1):105−111.Tan B X, Li Z Y, Chen E X, et al. Research advance in forest informa tion extractionfrom hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(Suppl.1): 105−111.
[66] 李瑞平, 黄侃, 黄华国. 吉林蛟河主要树种叶片光谱分类[J]. 东北林业大学学报, 2015, 43(3):48−55. doi: 10.3969/j.issn.1000-5382.2015.03.012Li R P, Huang K, Huang H G. Leaf classification of main tree species in Jiaohe of Jilin with hyperspectral data[J]. Journal of Northeast Forestry University, 2015, 43(3): 48−55. doi: 10.3969/j.issn.1000-5382.2015.03.012
[67] Quan W, Li P. Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements[J]. Hydrological Processes, 2012, 26(8): 1230−1241. doi: 10.1002/hyp.8221
[68] Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data[J]. Remote Sensing of Environment, 2005, 95(2): 177−194. doi: 10.1016/j.rse.2004.12.016
[69] 李军玲, 庞勇, 李增元, 等. 机载AISA Eagle Ⅱ高光谱数据在温带天然林树种分类中的应用[J]. 东北林业大学学报, 2019, 47(5):72−76. doi: 10.3969/j.issn.1000-5382.2019.05.014Li J L, Pang Y, Li Z Y, et al. Tree species classification using airborne hyperspectral data in a temperate natural forest[J]. Journal of Northeast Forestry University, 2019, 47(5): 72−76. doi: 10.3969/j.issn.1000-5382.2019.05.014
[70] 周磊, 辛晓平, 李刚, 等. 高光谱遥感在草原监测中的应用[J]. 草业科学, 2009, 26(4):20−27.Zhou L, Xin X P, Li G, et al. Application progress on hyperspectral remote sensing in grassland monitoring[J]. Pratacultural Science, 2009, 26(4): 20−27.
[71] 谭炳香, 李增元, 陈尔学, 等. EO-1 Hyperion高光谱数据的预处理[J]. 遥感信息, 2005(6):36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010Tan B X, Li Z Y, Chen E X, et al. Preprocessing of EO-1 Hyperion hyperspectral data[J]. Remote Sensing Information, 2005(6): 36−41. doi: 10.3969/j.issn.1000-3177.2005.06.010
[72] 李小梅, 谭炳香, 李增元, 等. CHRIS高光谱图像森林类型分类方法比较研究[J]. 遥感技术与应用, 2010, 25(2):227−234. doi: 10.11873/j.issn.1004-0323.2010.2.227Li X M, Tan B X, Li Z Y, et al. Comparation of forest types classification methods using CHRIS hyperspectral image[J]. Remote Sensing Technology and Application, 2010, 25(2): 227−234. doi: 10.11873/j.issn.1004-0323.2010.2.227
[73] 孙允珠, 蒋光伟, 李云端, 等. " 高分五号”卫星概况及应用前景展望[J]. 航天返回与遥感, 2018, 39(3):1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001Sun Y Z, Jiang G W, Li Y D, et al. GF-5 satellite: overview and application prospects[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001
[74] 刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679−695.Liu L J, Pang Y, Fan W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. Journal of Remote Sensing, 2013, 17(3): 679−695.
[75] 韦玮, 李增元, 谭炳香. 高光谱遥感技术在湿地研究中的应用[J]. 世界林业研究, 2010, 23(3):18−23.Wei W, Li Z Y, Tan B X. A review of application of hyperspectral remote sensing to wetland study[J]. World Forestry Research, 2010, 23(3): 18−23.
[76] 刘啸添, 周蕾, 石浩, 等. 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J]. 生态学报, 2018, 38(10):3482−3494.Liu X T, Zhou L, Shi H, et al. Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data[J]. Acta Ecologica Sinica, 2018, 38(10): 3482−3494.
[77] 李石磊, 高懋芳, 李召良, 等. 基于碳卫星的中国东北地区叶绿素荧光反演[J]. 中国农业信息, 2018, 30(6):53−62. doi: 10.12105/j.issn.1672-0423.20180605Li S L, Gao M F, Li Z L, et al. Retrieval of chlorophyll fluorescence from Tansat in Northeast China[J]. China Agricultural Informatics, 2018, 30(6): 53−62. doi: 10.12105/j.issn.1672-0423.20180605
[78] 张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5):963−978.Zhang Y J, Liu L Y, Hou Y M, et al. Progress in remote sensing of vegetation chlorophyll fluorescence[J]. Journal of Remote Sensing, 2009, 13(5): 963−978.
[79] 解潍嘉. 遥感观测林冠温度的角度效应动态模拟研究[D]. 北京: 北京林业大学, 2016.Xie W J. Simulation of angular effect and temporal variation of forest canopy temperature by remote sensing observations[D]. Beijing: Beijing Forestry University, 2016.
[80] Fisher J B, Hook S J, Allen R G, et al. ECOSTRESS: NASA’S next-generation mission to measure evapotranspiration from the international space station[C]//AGU. AGU fall meeting 2015. San Francisco: American Geophysical Union, 2015.
[81] 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022Pang Y, Li Z Y, Chen E X, et al. Lidar remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005, 41(3): 129−136. doi: 10.3321/j.issn:1001-7488.2005.03.022
[82] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2012, 67(2): 35−44.
[83] 林沂, Puttonen E, Hyypp J. 高光谱激光雷达: 三维生物物理化学生态测量学[J]. 遥感信息, 2017, 32(1):5−9. doi: 10.3969/j.issn.1000-3177.2017.01.002Lin Y, Puttonen E, Hyypp J. Hyperspectral LiDAR: a new era of 3D biophysichemical ecometrics[J]. Remote Sensing Information, 2017, 32(1): 5−9. doi: 10.3969/j.issn.1000-3177.2017.01.002
[84] 陈尔学, 李增元, 庞勇, 等. 基于极化合成孔径雷达干涉测量的平均树高提取技术[J]. 林业科学, 2007, 43(4):66−70. doi: 10.3321/j.issn:1001-7488.2007.04.011Chen E X, Li Z Y, Pang Y, et al. Polarimetric synthetic aperture radar interferometry based mean tree height extraction technique[J]. Scientia Silvae Sinicae, 2007, 43(4): 66−70. doi: 10.3321/j.issn:1001-7488.2007.04.011
[85] 薛娟, 俞琳锋, 林起楠, 等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4):108−114. doi: 10.6046/gtzyyg.2018.04.17Xue J, Yu L F, Lin Q N, et al. Using SENTINEL-1 time series InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land and Resources, 2018, 30(4): 108−114. doi: 10.6046/gtzyyg.2018.04.17
[86] 李平湘, 刘致曲, 杨杰, 等. 利用随机森林回归进行极化SAR土壤水分反演[J]. 武汉大学学报(信息科学版), 2019, 44(3):405−412.Li P X, Liu Z Q, Yang J, et al. Soil moisture retrieval of winter wheat fields based on random forest regression using Quad-polarimetric SAR images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 405−412.
[87] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12):1211−1216.Li D R, Zhang L P, Xia G S. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1211−1216.
[88] 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(35):1047−1054.Guo H D, Wang L Z, Chen F, et al. Scientific big data and digital earth[J]. Chinese Science Bulletin, 2014, 59(35): 1047−1054.
[89] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050−1061.Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5): 1050−1061.
[90] 何兴元, 任春颖, 陈琳, 等. 森林生态系统遥感监测技术研究进展[J]. 地理科学, 2018, 38(7):997−1011.He X Y, Ren C Y, Chen L, et al. The progress of forest ecosystems monitoring with remote sensing techniques[J]. Scientia Geographica Sinica, 2018, 38(7): 997−1011.
[91] Karathanassi V, Kolokousis P, Ioannidou S. A comparison study on fusion methods using evaluation indicators[J]. International Journal of Remote Sensing, 2007, 28(10): 2309−2341. doi: 10.1080/01431160600606890
[92] Evans T L, Costa M, Telmer K, et al. Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010, 3(4): 560−575.
[93] Lehmann E A, Caccetta P, Lowell K, et al. SAR and optical remote sensing: assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system[J]. Remote Sensing of Environment, 2015, 156: 335−348. doi: 10.1016/j.rse.2014.09.034
[94] 蔡庆空, 李二俊, 陶亮亮, 等. PROSAIL模型和水云模型耦合反演农田土壤水分[J]. 农业工程学报, 2018, 34(20):117−123. doi: 10.11975/j.issn.1002-6819.2018.20.015Cai Q K, Li E J, Tao L L, et al. Farmland soil moisture retrieval using PROSAIL and water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 117−123. doi: 10.11975/j.issn.1002-6819.2018.20.015
[95] Côté J F, Fournier R A, Luther J E, et al. Fine-scale three-dimensional modeling of boreal forest plots to improve forest characterization with remote sensing[J]. Remote Sensing of Environment, 2018, 219: 99−114. doi: 10.1016/j.rse.2018.09.026
[96] Huang Y, Chen Z X, Tao Y U, et al. Agricultural remote sensing big data: management and applications[J]. Journal of Integrative Agriculture, 2018, 17(9): 1915−1931. doi: 10.1016/S2095-3119(17)61859-8
[97] José G D, Philip L, Mathias D. Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences[J/OL]. Remote Sensing, 2016, 8. DOI: 1033902/rs8020119 [2019−08−16]. https://www.mdpi.xilesou.top/2072-4292/8/2/119.
[98] Swarup V, Geschwind D H. Alzheimer’s disease: from big data to mechanism[J]. Nature, 2013, 500: 34−35. doi: 10.1038/nature12457
[99] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5):748−767.Chen Z X, Ren J Q, Tang H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748−767.
[100] 刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24):98−106. doi: 10.11975/j.issn.1002-6819.2016.24.013Liu J G, Zhao C J, Yang G J, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98−106. doi: 10.11975/j.issn.1002-6819.2016.24.013
[101] Ramón D-V, Raúl D L R, Lorenzo L, et al. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials[J]. Remote Sensing, 2015, 7(4): 4213−4232. doi: 10.3390/rs70404213
[102] Gómez-Candón D, Virlet N, Labbé S, et al. Field phenotyping of water stress at tree scale by UAV-sensed imagery: new insights for thermal acquisition and calibration[J]. Precision Agriculture, 2016, 17(6): 1−15.