[1] 宋沙沙, 苟宇波, 何欣燕, 等. 改良剂对盐碱土的改良效应及垂柳生长的影响[J]. 北京林业大学学报, 2017, 39(5):89−97.

Song S S, Gou Y B, He X Y, et al. Effects of modifier application on saline-alkali land amelioration and weeping willow growth[J]. Journal of Beijing Forestry University, 2017, 39(5): 89−97.
[2] Gamon J A, Field C B, Goulden M L, et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types[J]. Ecological Applications, 1995, 5(1): 28−41. doi:  10.2307/1942049
[3] 金桂香, 刘海轩, 刘瑜, 等. 基于叶片反射光谱特征的银杏健康量化评价技术[J]. 光谱学与光谱分析, 2018, 38(4):1184−1190.

Jin G X, Liu H X, Liu Y, et al. Study on quantitative assessment of Ginkgo biloba tree health based on characteristics of leaf spectral reflectance[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1184−1190.
[4] 李佛琳. 基于光谱的烟草生长与品质监测研究[D]. 南京: 南京农业大学, 2006.

Li F L. Monition tobacco growth and quality based on spectra[D]. Nanjing: Nanjing Agricultural University, 2006.
[5] Castro-Esau K L, Sánchez-Azofeifa G A, Rivard B, et al. Variability in leaf optical properties of Mesoamerican trees and the potential for species classification[J]. American Journal of Botany, 2006, 93(4): 517−530. doi:  10.3732/ajb.93.4.517
[6] 彭涛, 李鹏民, 贾裕娇, 等. 介绍两种无损伤测定植物活体叶片色素含量的方法[J]. 植物生理学通讯, 2006, 42(1):83−86.

Peng T, Li P M, Jia Y J, et al. Two noninvasive methods for determining pigment content in plant leaves[J]. Plant Physiology Communications, 2006, 42(1): 83−86.
[7] Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153(1): 185−194. doi:  10.1046/j.0028-646X.2001.00289.x
[8] Madeira A C, Mentions A, Ferreira M E, et al. Relationship between spectroradiometric and chlorophyll measurements in green beans[J]. Communications in Soil Science and Plant Analysis, 2000, 31(5−6): 631−643. doi:  10.1080/00103620009370465
[9] 王鑫, 王梓橦, 尤文强, 等. 利用叶片正反面反射光谱估算叶绿素含量[J]. 光谱学与光谱分析, 2018, 38(8):2524−2528.

Wang X, Wang Z T, You W Q, et al. Estimation of chlorophyll content by reflectance spectra of the positive and negative blade[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2524−2528.
[10] Peñuelas J, Pinol J, Ogaya R, et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970)[J]. International Journal of Remote Sensing, 1997, 18(13): 2869−2875. doi:  10.1080/014311697217396
[11] 王树东, 刘素红, 丁建丽, 等. 叶片水分含量光谱响应变化研究[J]. 干旱区地理, 2006, 29(4):510−516. doi:  10.3321/j.issn:1000-6060.2006.04.009

Wang S D, Liu S H, Ding J L, et al. Research on spectral changes with water losing of leaves[J]. Arid Land Geography, 2006, 29(4): 510−516. doi:  10.3321/j.issn:1000-6060.2006.04.009
[12] 刘畅, 孙鹏森, 刘世荣, 等. 穿透雨减少下锐齿栎叶片光合色素季节动态及其反射光谱响应[J]. 应用生态学报, 2017, 28(4):1077−1086.

Liu C, Sun P S, Liu S R, et al. Leaf photosynthetic pigment seasonal dynamic of Quercus aliena var. acuteserrata and its spectral reflectance response under throughfall elimination[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1077−1086.
[13] 曾伟, 蒋延玲, 李峰, 等. 蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理[J]. 生态学报, 2008,28(6):2504−2510.

Zeng W, Jiang Y L, Li F, et al. Responses of Quercus mongolica’s photosynthetic parameters to soil moisture stress[J]. Acta Ecologica Sinica, 2008,28(6): 2504−2510.
[14] 夏莹莹, 毛子军, 马立祥, 等. 水分条件对红松和西伯利亚红松针叶脯氨酸与叶绿素含量的影响[J]. 植物研究, 2008, 28(3):330−335. doi:  10.7525/j.issn.1673-5102.2008.03.018

Xia Y Y, Mao Z J, Ma L X, et al. Effects of water conditions on proline and chllorophy contents in Pinus koraiensis and Pinus sibirica[J]. Bulletin of Botanical Research, 2008, 28(3): 330−335. doi:  10.7525/j.issn.1673-5102.2008.03.018
[15] 刘伟国, 范秀华. 长白山红松阔叶林主要树种光谱反射特征对光环境的响应[J]. 生态学报, 2009, 29(9):4720−4726. doi:  10.3321/j.issn:1000-0933.2009.09.015

Liu W G, Fan X H. The effect of light on the spectral reflectance of six tree species of broadleaved Korean pine forest in Changbai Mountain[J]. Acta Ecologica Sinica, 2009, 29(9): 4720−4726. doi:  10.3321/j.issn:1000-0933.2009.09.015
[16] 刘柿良, 马明东, 潘远智, 等. 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响[J]. 植物生态学报, 2012, 36(10):1062−1074.

Liu S L, Ma M D, Pan Y Z, et al. Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1062−1074.
[17] Richardson A D, Berlyn G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA[J]. American Journal of Botany, 2002, 89(1): 88−94. doi:  10.3732/ajb.89.1.88
[18] Poulos H M, Goodale U M, Berlyn G P. Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position[J]. American Journal of Botany, 2007, 94(5): 809−818. doi:  10.3732/ajb.94.5.809
[19] 卢文敏, 刘伟国, 方晓雨, 等. 不同海拔的长白山岳桦叶片反射光谱研究[J]. 北京林业大学学报, 2011, 33(1):55−59.

Lu W M, Liu W G, Fang X Y, et al. Spectral reflectance of Betula ermanii at different altitudes in the Changbai Mountains[J]. Journal of Beijing Forestry University, 2011, 33(1): 55−59.
[20] 范秀华, 刘伟国, 卢文敏, 等. 长白山红松臭冷杉光谱反射随海拔的变化[J]. 生态学报, 2011, 31(14):3910−3917.

Fan X H, Liu W G, Lu W M, et al. Changes of spectral reflectance of Pinus koraiensis and Abies nephrolepis along altitudinal gradients in Changbai Mountain[J]. Acta Ecologica Sinica, 2011, 31(14): 3910−3917.
[21] 李菊艳, 赵成义, 孙栋元, 等. 水分对胡杨幼苗光合及生长特性的影响[J]. 西北植物学报, 2009, 29(7):1445−1451. doi:  10.3321/j.issn:1000-4025.2009.07.024

Li J Y, Zhao C Y, Sun D Y, et al. Photosynthetic characteristics and growth of Populus euphratica seedlings with water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(7): 1445−1451. doi:  10.3321/j.issn:1000-4025.2009.07.024
[22] 李菊艳, 赵成义, 闫映宇, 等. 盐分对胡杨幼苗生长及光合特性的影响[J]. 中国沙漠, 2010, 30(1):80−86.

Li J Y, Zhao C Y, Yan Y Y, et al. Effects of salt on the growth and photosynthetic characteristics of Populus euphratica seedlings[J]. Journal of Dessert Research, 2010, 30(1): 80−86.
[23] 蔡金桓, 薛立. 高山植物的光合生理特性研究进展[J]. 生态学杂志, 2018, 37(1):245−254.

Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants[J]. Chinese Journal of Ecology, 2018, 37(1): 245−254.
[24] 张丽霞, 尹季显. 气候变暖对农作物物候, 光合生理特性和产量影响的研究进展[J]. 安徽农业科学, 2015, 43(29):201−203, 218. doi:  10.3969/j.issn.0517-6611.2015.29.072

Zhang L X, Yin J X. Research progress about the effects of climate warming on crop phenology, photosynthetic physiological characteristics and yield[J]. Journal of Anhui Agricultural Sciences, 2015, 43(29): 201−203, 218. doi:  10.3969/j.issn.0517-6611.2015.29.072
[25] 侯彦会, 周广胜, 许振柱. 基于红外增温的草地生态系统响应全球变暖的研究进展[J]. 植物生态学报, 2013, 37(12):1153−1167.

Hou Y H, Zhou G S, Xu Z Z. An overview of research progress on responses of grassland ecosystems to global warming based on infrared heating experiments[J]. Chinese Journal of Plant Ecology, 2013, 37(12): 1153−1167.
[26] 田大伦, 罗勇, 项文化, 等. 樟树幼树光合特性及其对CO2 浓度和温度升高的响应[J]. 林业科学, 2004, 40(5):88−92. doi:  10.3321/j.issn:1001-7488.2004.05.014

Tian D L, Luo Y, Xiang W H, et al. Photosynthetic characteristics of Cinnamomum camphora and its response to elevation of CO2 and temperature[J]. Scientia Silvae Sinicae, 2004, 40(5): 88−92. doi:  10.3321/j.issn:1001-7488.2004.05.014
[27] 霍宏. 气候暖化对兴安落叶松光合和生长影响的研究[D]. 哈尔滨: 东北林业大学, 2007.

Huo H. The effects of climate warming on photosynthesis and growth of Larix gmelinii[D]. Harbin: Northeast Forestry University, 2007.
[28] 王精明, 李永华, 黄胜琴, 等. CO2浓度升高对凤梨叶片生长和光合特性的影响[J]. 热带亚热带植物学报, 2004, 12(6):511−514. doi:  10.3969/j.issn.1005-3395.2004.06.004

Wang J M, Li Y H, Huang S Q, et al. Effects of elevated CO2 concentration on growth and photosynthetic characteristics in Guzmania ‘Danis’[J]. Journal of Tropical and Subtropical Botany, 2004, 12(6): 511−514. doi:  10.3969/j.issn.1005-3395.2004.06.004
[29] 李永华, 刘丽娜, 叶庆生. 高CO2浓度对红掌的生长和光合作用的影响[J]. 热带亚热带植物学报, 2005, 13(4):343−346. doi:  10.3969/j.issn.1005-3395.2005.04.013

Li Y H, Liu L N, Ye Q S. Effects of elevated CO2 on the growth and photosynthesis of Anthurium andraeanum[J]. Journal of Tropical and Subtropical Botany, 2005, 13(4): 343−346. doi:  10.3969/j.issn.1005-3395.2005.04.013
[30] 欧英娟, 彭晓春, 董家华, 等. CO2浓度升高对龙血树和春羽生长及光合生理的影响[J]. 西北植物学报, 2013, 33(11):2265−2272. doi:  10.7606/j.issn.1000-4025.2013.11.2265

Ou Y J, Peng X C, Dong J H, et al. Effect of elevated CO2 concentration on the growth and photosynthetic physiology of Dracaena angustifolia and Philodenron selloum[J]. Acta Bot Boreal-Occident Sin, 2013, 33(11): 2265−2272. doi:  10.7606/j.issn.1000-4025.2013.11.2265
[31] 叶旺敏, 熊德成, 杨智杰, 等. 模拟增温对杉木幼树生长和光合特性的影响[J]. 生态学报, 2019, 39(7):2501−2509.

Ye W M, Xiong D C, Yang Z J, et al. Effect of soil warming on growth and photosynthetic characteristics of Cunninghamia lanceolata saplings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(7): 2501−2509.
[32] 毛子军, 赵溪竹, 刘林馨, 等. 3种落叶松幼苗对CO2升高的光合生理响应[J]. 生态学报, 2010, 30(2):317−323.

Mao Z J, Zhao X Z, Liu L X, et al. photosynthetic physiological characteristics in response to elevated CO2 concentration of three larch (Larix) species seedings[J]. Acta Ecologica Sinica, 2010, 30(2): 317−323.
[33] 张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090−1100. doi:  10.3773/j.issn.1005-264x.2009.06.009

Zhang C Y, Zhao X H,Zhao Y Z. Community structure in different successional stages in north temperature forests of Changbai Mountains, China[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1090−1100. doi:  10.3773/j.issn.1005-264x.2009.06.009
[34] 王玲. 长白山阔叶红松林群落树种关联及演替特征的研究[D]. 吉林: 北华大学, 2017.

Wang L. Study on correlation and succession characteristics of tree species broadleaved Korean pine forest in Changbai Moutain[D]. Jilin: Beihua University, 2017.
[35] Chmura D J, Modrzyński J, Chmielarz P, et al. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit[J]. Plant Biology, 2017, 19(2): 172−182. doi:  10.1111/plb.12531
[36] 赵晓焱, 王传宽, 霍宏. 兴安落叶松(Larix gmeini)光合能力及相关因子的种源差异[J]. 生态学报, 2008, 28(8):3798−3807. doi:  10.3321/j.issn:1000-0933.2008.08.036

Zhao X Y, Wang C K, Huo H. Variations in photosynthetic capacity and associated factors for Larix gmelinii from diverse origin[J]. Acta Ecologica Sinica, 2008, 28(8): 3798−3807. doi:  10.3321/j.issn:1000-0933.2008.08.036
[37] 王秀伟, 毛子军. 兴安落叶松人工林冠层气体交换的时空特性[J]. 林业科学, 2007, 43(11):43−49. doi:  10.3321/j.issn:1001-7488.2007.11.008

Wang X W, Mao Z J. Temporal and spatial variation in gas exchange in canopy of Larix gmelinii plantation[J]. Scientia Silvae Sinicae, 2007, 43(11): 43−49. doi:  10.3321/j.issn:1001-7488.2007.11.008
[38] 王文章, 陈杰. 落叶松光合特性与初级生产力[J]. 东北林业大学学报, 1994, 22(4):15−21.

Wang W Z, Chen J. Study on the photosynthetic characteristics and the primary productivity of Larix olgensis[J]. Journal of Northeast Forestry University, 1994, 22(4): 15−21.
[39] 黄珍, 唐景毅, 柳静臣, 等. 长白山天然更新红松幼树光合与光谱特性的季节动态[J]. 应用与环境生物学报, 2014, 20(3):455−461.

Huang Z, Tang J Y, Liu J C, et al. Seasonal dynamics of photosynthesis and spectral characteristics of natural regeneration Pinus koriensis in the Changbai Mountains[J]. Chinese Journal of Applied Environmental Biology, 2014, 20(3): 455−461.
[40] Zhang M, Zhu J, Li M, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. Forest Ecology and Management, 2013, 306: 234−242. doi:  10.1016/j.foreco.2013.06.031
[41] Ryan M G, Yoder B J. Hydraulic limits to tree height and tree growth[J]. Bioscience, 1997, 47(4): 235−242. doi:  10.2307/1313077
[42] Jianlu M, Liwen Z, Dong C. Geographic distribution of Pinus koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40−48.
[43] John H M T. Mathematical models in plant physiology[M]. London: Academic Press, 1976.
[44] He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China[J/OL]. PloS One, 2018, 13(1): e0186226 [2019−08−16]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774681/.
[45] Pulinets M P. The influence of light intensity on the growth of Pinus koraiensis[J]. Lesnoe Khozyaistvo, 1986, 4(4): 40−42.
[46] 刘传照, 李俊清. 林下光照条件与红松幼树生长的相关性研究[J]. 东北林业大学学报, 1991, 19(3):103−108.

Liu C Z, Li J Q. Correlativity of the growth of young Korean pine and the condition in the forest[J]. Journal of Northeast Forestry University, 1991, 19(3): 103−108.
[47] 姜超, 黄珍, 方晓雨, 等. 长白山5种槭属植物光合及反射光谱特性[J]. 应用与环境生物学报, 2013, 19(4):713−717. doi:  10.3724/SP.J.1145.2013.00713

Jiang C, Huang Z, Fang X Y, et al. Characteristics of photosynthesis and spectral reflectance in five Acer species in the Changbai Mountain[J]. Chinese Journal of Applied Environmental Biology, 2013, 19(4): 713−717. doi:  10.3724/SP.J.1145.2013.00713
[48] Legner N, Fleck S, Leuschner C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance[J]. Trees, 2014, 28(1): 263−280. doi:  10.1007/s00468-013-0947-0
[49] Lambers H, Chapin III F S, Pons T L. Plant physiological ecology[M]. Berlin: Springer Science & Business Media, 2008.
[50] Hikosaka K, Niinemets Ü, Niels P R A. Canopy photosynthesis: from basics to applications[M]. Dordrecht: Springer, 2016.
[51] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006.
[52] 夏国威. 日本落叶松人工林冠层光合生产力研究[D]. 北京: 中国林业科学研究院, 2017.

Xia G W. Photosynthetic production of crown layer in Larix kaempferi plantation[D]. Beijing: Chinese Academy of Forestry, 2017.
[53] Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height[J]. Nature, 2004, 428: 851−854. doi:  10.1038/nature02417
[54] Woodruff D R, McCulloh K A, Warren J M, et al. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir[J]. Plant, Cell & Environment, 2007, 30(5): 559−569.
[55] He C X, Li J Y, Guo M, et al. Changes in leaf photosynthetic characteristics and water use efficiency along with tree height of 4 tree species[J]. Acta Ecologica Sinica, 2008, 28(7): 3008−3016. doi:  10.1016/S1872-2032(08)60064-5
[56] 方晓雨, 张宏琴, 姜超, 等. 3种乔木叶片反射光谱与光合特性随树高的变化[J]. 应用与环境生物学报, 2013, 19(2):383−388. doi:  10.3724/SP.J.1145.2013.00383

Fang X Y, Zhang H Q, Jiang C, et al. Changes in leaf spectral reflectance and photosynthetic characteristics with tree height in three tree species[J]. Chinese Journal of Applied Environmental Biology, 2013, 19(2): 383−388. doi:  10.3724/SP.J.1145.2013.00383
[57] Weng J H, Liao T S, Sun K H, et al. Seasonal variations in photosynthesis of Picea morrisonicola growing in the subalpine region of subtropical Taiwan[J]. Tree Physiology, 2005, 25(8): 973−979. doi:  10.1093/treephys/25.8.973
[58] Weng J H, Chen Y N, Liao T S. Relationships between chlorophyll fluorescence parameters and photochemical reflectance index of tree species adapted to different temperature regimes[J]. Functional Plant Biology, 2006, 33(3): 241−246. doi:  10.1071/FP05156
[59] Weng J H, Lai K M, Liao T S, et al. Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan[J]. Trees, 2009, 23(2): 347−356. doi:  10.1007/s00468-008-0283-y
[60] Billings W D, Morris R J. Reflection of visible and infrared radiation from leaves of different ecological groups[J]. American Journal of Botany, 1951, 38(5): 327−331.
[61] Cameron R J. Light intensity and the growth of Eucalyptus seedlings (II): the effect of cuticular waxes on light absorption in leaves of Eucalyptus species[J]. Australian Journal of Botany, 1970, 18(3): 275−284. doi:  10.1071/BT9700275
[62] Clark J B, Lister G R. Photosynthetic action spectra of trees( II): the relationship of cuticle structure to the visible and ultraviolet spectral properties of needles from four coniferous species[J]. Plant Physiology, 1975, 55(2): 407−413. doi:  10.1104/pp.55.2.407
[63] 王红梅, 包维楷, 李芳兰. 不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J]. 应用与环境生物学报, 2008, 14(6):757−762.

Wang H M, Bao W K, Li F L. Physiological and biochemical responses of two-years-old Sophora davidii seedling leaves to different water stresses[J]. Chinese Journal of Applied Environmental Biology, 2008, 14(6): 757−762.
[64] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2−3): 337−354. doi:  10.1016/S0034-4257(02)00010-X
[65] Gamon J A, Field C B, Fredeen A L, et al. Assessing photosynthetic downregulation in sunflower stands with an optically-based model[J]. Photosynthesis Research, 2001, 67(1−2): 113−125.
[66] 彭涛, 姚广, 高辉远, 等. 植物叶片和冠层光化学反射指数与叶黄素循环的关系[J]. 生态学报, 2009, 29(4):1987−1993. doi:  10.3321/j.issn:1000-0933.2009.04.044

Peng T, Yao G, Gao H Y, et al. Relationship between xanthophyll cycle and photochemical reflectance index measured at leaf or canopy level in two field-grown plant species[J]. Acta Ecologica Sinica, 2009, 29(4): 1987−1993. doi:  10.3321/j.issn:1000-0933.2009.04.044
[67] Demmig-Adams B, Adams III W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996, 1(1): 21−26. doi:  10.1016/S1360-1385(96)80019-7