[1] 陶玉华. 森林生态系统碳储量研究的意义及国内外研究进展[J]. 现代农业科技, 2012(9):205, 212.

Tao Y H. Research significance of carbon storage of forest ecosystem and research progress at home and abroad[J]. Modern Agricultural Sciences and Technology, 2012(9): 205, 212.
[2] 杨洪晓, 吴波, 张金屯, 等. 森林生态系统的固碳功能和碳储量研究进展[J]. 北京师范大学学报(自然科学版), 2005, 41(2):172−177. doi:  10.3321/j.issn:0476-0301.2005.02.018.

Yang H X, Wu B, Zhang J T, et al. Progress of research into carbon fixation and storage of forest ecosystems[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(2): 172−177. doi:  10.3321/j.issn:0476-0301.2005.02.018.
[3] Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
[4] 韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70−79. doi:  10.11707/j.1001-7488.20180909.

Han Z T, Jiang H, Wang W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data[J]. Scientia Silvae Sinicae, 2018, 54(9): 70−79. doi:  10.11707/j.1001-7488.20180909.
[5] 李春梅. 基于多源数据的森林地上生物量估测方法研究[D]. 昆明: 西南林业大学, 2016.

Li C M. A study of the retrieval methods of forest above ground biomass based on multi-source data[D]. Kunming: Southwest Forestry University, 2016.
[6] 李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3):64−72.

Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64−72.
[7] 庞勇, 李增元, 谭炳香, 等. 点云密度对机载激光雷达林分高度反演的影响[J]. 林业科学研究, 2008, 21(增刊): 14−19.

Pang Y, Li Z Y, Tan B X, et al. The effects of airborne LiDAR point density on forest height estimation[J]. Forest Research, 2008, 21(Suppl.): 14−19.
[8] 刘清旺, 李增元, 陈尔学, 等. 机载LIDAR点云数据估测单株木生物量[J]. 高技术通讯, 2010, 20(7):765−770. doi:  10.3772/j.issn.1002-0470.2010.07.019

Liu Q W, Li Z Y, Chen E X, et al. Estimating biomass of individual trees using point cloud data of airborne[J]. Chinese High Technology Letters, 2010, 20(7): 765−770. doi:  10.3772/j.issn.1002-0470.2010.07.019
[9] 穆喜云, 张秋良, 刘清旺, 等. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015, 30(2):220−225.

Mu X Y, Zhang Q L, Liu Q W, et al. A study on typical forest biomass mapping technology of Great Khingan using airborne laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(2): 220−225.
[10] 陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6):18−23. doi:  10.3969/j.issn.1001-4241.1999.06.004

Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23. doi:  10.3969/j.issn.1001-4241.1999.06.004
[11] 张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6):983−997.

Zhang W F, Chen E X, Li Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Application, 2017, 32(6): 983−997.
[12] Pu L, Zhang X L, Shi J, et al. Adaptive filtering for 3D SAR data based on dynamic gaussian threshold[C]// Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Xiamen: IEEE, 2019.
[13] 张王菲. 星载SAR遥感反演中地形辐射校正的关键技术研究[D]. 昆明: 昆明理工大学, 2011.

Zhang W F. Study on the key techniques of terrain radiometric correction in spaceborne SAR remote sensing inversion[D]. Kunming: Kunming University of Science and Technology, 2011.
[14] 杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015.

Yang H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric Sar imagery[D]. Beijing: Chinese Academy of Forestry, 2015.
[15] 陈传国. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.

Chen C G. Manual of main forest biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
[16] Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786−804. doi:  10.1109/PROC.1979.11328
[17] Tuominen S, Pekkarinen A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256−268. doi:  10.1016/j.rse.2004.10.001
[18] Chica-Olmo M, Abarca-Hernández F. Computing geostatistical image texture for remotely sensed data classification[J]. Computers & Geosciences, 2000, 26(4): 373−383.
[19] 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12):3289−3297.

Zhang L M, Duan B L, Zou B. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289−3297.
[20] Breiman L. Random forests[D]. Berkeley: University of California, 2001: 5−26
[21] 李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 54(4):1190−1197. doi:  10.7679/j.issn.2095-1353.2013.163

Li X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology, 2013, 54(4): 1190−1197. doi:  10.7679/j.issn.2095-1353.2013.163
[22] 苏瑞雪, 汤玉奇. 光学-极化SAR影像特征融合与分类[J]. 测绘与空间地理信息, 2019(6):51−55. doi:  10.3969/j.issn.1672-5867.2019.06.014

Su R X, Tang Y Q. Feature fusion and classification of optical-PolSAR images[J]. Geomatics & Spatial Information Technology, 2019(6): 51−55. doi:  10.3969/j.issn.1672-5867.2019.06.014
[23] 范亚雄. 星载X-波段干涉SAR森林高度估测方法研究[D]. 北京: 中国林业科学研究院, 2019.

Fan Y X. Study on forest height estimation method of spaceborne X- band interferometric SAR[D]. Beijing: Chinese Academy of Forestry, 2019.