[1] 刘瑞鹏, 毛子军, 李兴欢, 等. 模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J]. 生态学报, 2013, 33(18):5661−5667. doi:  10.5846/stxb201304140704

Liu R P, Mao Z J. Effects of simulated temperature increase and vary little quality on litter decomposition[J]. Acta Ecologica Sinica, 2013, 33(18): 5661−5667. doi:  10.5846/stxb201304140704
[2] Intergovernmental Panel on Climate Change (IPCC). Climate change in 2007: the physical science basis[R]. Cambridge: Cambridge University Press, 2007.
[3] Li L J, Zeng D H, Yu Z Y, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of northeast China[J]. Journal of Arid Environments, 2011, 75(9): 787−792. doi:  10.1016/j.jaridenv.2011.04.009
[4] Austin A T, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442: 555−558. doi:  10.1038/nature05038
[5] Zhao Q Q, Bai J H, Liu P P, et al. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands[J]. CLEAN: Soil Air Water, 2015, 43: 441−445. doi:  10.1002/clen.201300823
[6] 宋飘, 张乃莉, 马克平, 等. 全球气候变暖对凋落物分解的影响[J]. 生态学报, 2014, 34(6):1327−1339.

Song P, Zhang N L, Ma K P, et al. Impacts of global warming on litter decomposition[J]. Acta Ecologica Sinica, 2014, 34(6): 1327−1339.
[7] 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000, 24(6):674−679. doi:  10.3321/j.issn:1005-264X.2000.06.006

Wang Q B, Li L H, Bai Y F, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communitles[J]. Acta Phytoecologica Sinica, 2000, 24(6): 674−679. doi:  10.3321/j.issn:1005-264X.2000.06.006
[8] 葛晓改, 曾立雄, 黄志霖, 等. 土壤温度和水分含量对三峡库区马尾松凋落物叶分解的影响[J]. 林业科学, 2013, 49(9):153−157.

Ge X G, Zeng L X, Huang Z L, et al. Effects of soil temperature and soil water content to needle litter leaf decomposition of Pinus massoniana plantations in Three Gorges Reservoir Area[J]. Scientia Silvae Science, 2013, 49(9): 153−157.
[9] Fierer N, Craine J M, Schimel M L P. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 86(2): 320−326. doi:  10.1890/04-1254
[10] Kang H, Freeman C. Soil enzyme analysis for leaf litter decomposition in global wetlands[J]. Communications in Soil Science and Plant Analysis, 2009, 40(21/22): 3323−3334.
[11] Cheng X, Luo Y, Su B, et al. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie[J]. Agriculture Ecosystems & Environment, 2010, 138(3): 206−213.
[12] Sjögersten S, Wookey P A. Decomposition of mountain birch leaf litter at the forest-tundra ecotone in the Fennoscandian Muntains in relation to climate and soil conditions[J]. Plant and Soil, 2004, 262(1/2): 215−227. doi:  10.1023/B:PLSO.0000037044.63113.fe
[13] 淡沐春, 杨劼, 侯虹, 等. 模拟增温增水对克氏针茅草原主要物种及群落凋落物分解的影响[J]. 中国农业气象, 2015, 36(6):746−754. doi:  10.3969/j.issn.1000-6362.2015.06.012

Dan M C, Yang J, Hou H, et al. Effects of simulated warming and precipitation enhancement on litter decomposition of Stipa krylovii steppe[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 746−754. doi:  10.3969/j.issn.1000-6362.2015.06.012
[14] 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展[J]. 应用生态学报, 2013, 24(11):3300−3310.

Wang X Y, Zhao X Y, Li Y L, et al. Effects of environmental factors on litter decomposition in arid and semi-arid regions: a review[J]. China Journal of Applied Ecology, 2013, 24(11): 3300−3310.
[15] 关阅章, 刘安田, 仲启钺, 等. 滨海围垦湿地芦苇凋落物分解对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2013(5):27−34.

Guan Y Z, Liu A T, Zhong Q Y, et al. Responses of decomposition of Phragmites australis litters to simulated temperature enhancement in the reclamed coastal wetland[J]. Journal of East China Normal University (Natural Science), 2013(5): 27−34.
[16] 李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望[J]. 生态环境学报, 2010, 19(9):2260−2264. doi:  10.3969/j.issn.1674-5906.2010.09.041

Li X B, Ma L, Chen L, et al. Research progress and the prospect of grassland litters decomposition[J]. Ecology and Environmental Sciences, 2010, 19(9): 2260−2264. doi:  10.3969/j.issn.1674-5906.2010.09.041
[17] 王军, 王冠钦, 李飞, 等. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 2018, 42(1):116−125. doi:  10.17521/cjpe.2017.0297

Wang J, Wang G Q, Li F, et al. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 2018, 42(1): 116−125. doi:  10.17521/cjpe.2017.0297
[18] 郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 2017, 28(9):2840−2848.

Zheng H F, Chen Y M, Yang L, et al. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. China Journal of Applied Ecology, 2017, 28(9): 2840−2848.
[19] Castro H F, Classen A T, Austin E E, et al. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Enviromental Microbiology, 2010, 76: 999−1007. doi:  10.1128/AEM.02874-09
[20] Jia X, Zha T S, Wu B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11: 4679−4693. doi:  10.5194/bg-11-4679-2014
[21] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322−331. doi:  10.2307/1932179
[22] Brandt L A, King J Y, Milchunas D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global Change Biology, 2007, 13(10): 2193−2205. doi:  10.1111/j.1365-2486.2007.01428.x
[23] Boyero L, Pearson R G, Gessner M O, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration[J]. Ecology Letter, 2011, 14(3): 289−294. doi:  10.1111/j.1461-0248.2010.01578.x
[24] Ferreira V, Chauvet E. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams[J]. Oecologia, 2011, 167(1): 279−291. doi:  10.1007/s00442-011-1976-2
[25] Song C L, Yang D, Song G, et al. Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China[J]. Ecological Engineering, 2011, 37(10): 1578−1582. doi:  10.1016/j.ecoleng.2011.03.036
[26] Aerts R. The freezer defrosting: global warming and litter decomposition rates in cold biomes[J]. Journal of Ecology, 2006, 94(4): 713−724. doi:  10.1111/j.1365-2745.2006.01142.x
[27] Epstein H E, Burke I C, Lauenroth W K. Regional patterns of decomposition and primary production rates in the U.S.Great Plains[J]. Ecology, 2002, 83(2): 320−327.
[28] Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity[J]. Soil Biology and Biochemistry, 2011, 43(9): 1902−1907. doi:  10.1016/j.soilbio.2011.05.011
[29] Weedon J T, Kowalchuk G A, Aerts R, et al. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure[J]. Global Change Biology, 2012, 18: 138−150. doi:  10.1111/j.1365-2486.2011.02548.x
[30] Xu Z F, Yin H J, Zhao C Z, et al. A review of responses of litter decomposition in terrestrial ecosystems to global warming[J]. Chinese Journal of Plant Ecology, 2009, 33(6): 1208−1219.
[31] Berg B, Johansson M B, Meentemeyer V. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control[J]. Canadian Journal of Forest Research, 2000, 30(7): 1136−1147. doi:  10.1139/x00-044
[32] Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility: a laboratory study[J]. Soil Biology and Biochemistry, 2003, 35(3): 391−399. doi:  10.1016/S0038-0717(02)00290-0
[33] Yang W Q, Deng R J, Zhang J. Forest litter decomposition and its responses to global climate change[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2889−2895.
[34] Day T A, Ruhland C T, Xiong F S. Warming increases aboveground plant biomass and C stocks in vascular plant dominated Antarctic tundra[J]. Global Change Biology, 2008, 14(8): 1827−1843. doi:  10.1111/j.1365-2486.2008.01623.x