[1] Nakayama H, Nakayama N, Nakamasu A, et al. Toward elucidating the mechanisms that regulate heterophylly[J]. Plant Morphology, 2012, 24(1): 57−63. doi:  10.5685/plmorphol.24.57
[2] 叶元英, 柯卫东, 李峰, 等. 慈姑叶片结构的光学显微镜和扫描电镜观察[J]. 长江蔬菜, 2013(18):67−70. doi:  10.3865/j.issn.1001-3547.2013.18.022

Ye Y Y, Ke W D, Li F, et al. Observation of leaf structure of Chinese arrowhead (Sagittaria trifolia L.) by using optical microscope and scanning electron microscope[J]. Journal of Changjiang Vegetables, 2013(18): 67−70. doi:  10.3865/j.issn.1001-3547.2013.18.022
[3] Kordyum E, Klimenko E. Chloroplast ultrastructure and chlorophyll performance in the leaves of heterophyllous Nuphar lutea (L.) Smith. plants[J]. Aquatic Botany, 2013, 110: 84−91. doi:  10.1016/j.aquabot.2013.05.013
[4] Leigh A, Zwieniecki M A, Rockwell F E, et al. Structural and hydraulic correlates of heterophylly in Ginkgo biloba[J]. New Phytologist, 2011, 189(2): 459−470. doi:  10.1111/j.1469-8137.2010.03476.x
[5] Li G, Hu S, Yang J, et al. Water-wisteria as an ideal plant to study heterophylly in higher aquatic plants[J]. Plant Cell Reports, 2017, 36(8): 1225−1236. doi:  10.1007/s00299-017-2148-6
[6] 张金玲, 陈海鹏, 李玉灵, 等. 臭柏异形叶水分特性的比较[J]. 干旱区资源与环境, 2018(5):154−159.

Zhang J L, Chen H P, Li Y L, et al. Comparison of water characteristics in the heterophylly of Sabina vulgaris[J]. Journal of Arid Land Resources and Environment, 2018(5): 154−159.
[7] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843−854. doi:  10.1016/0092-8674(93)90529-Y
[8] Sunkar R. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001−2019. doi:  10.1105/tpc.104.022830
[9] Mi C E. Characterization of five microrna families in maize[J]. Journal of Experimental Botany, 2006, 57(11): 2601−2612. doi:  10.1093/jxb/erl013
[10] Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of micro-RNAs from moss[J]. Plant Journal, 2005, 43(6): 837−848. doi:  10.1111/j.1365-313X.2005.02499.x
[11] Rajewsky N, Socci N D. Computational identification of microRNA targets[J]. Genome Biology, 2004, 5(2): 5−39. doi:  10.1186/gb-2004-5-2-p5
[12] 王杏茹, 李文静, 陈冰星, 等. 蕹菜耐受长时间高温后的miRNA分析[J]. 园艺学报, 2019, 46(3):486−498.

Wang X R, Li W J, Chen B X, et al. Analysis of mirna in water spinach (Ipomoea aquatica) under long-time high temperature[J]. Acta Horticulturae Sinica, 2019, 46(3): 486−498.
[13] 彭廷, 文慧丽, 赵亚帆, 等. 盐、干旱胁迫下水稻相关miRNA的鉴定及表达分析[J]. 华北农学报, 2018, 33(2):20−27.

Peng T, Wen H L, Zhao Y F, et al. Identification and expressions analysis of rice miRNA related to salt and drought stresses[J]. Acta Agriculture Boreali-Sinica, 2018, 33(2): 20−27.
[14] 司婧娜, 周韬, 徐放, 等. 胡杨无性系幼苗响应盐胁迫的miRNA表达差异研究[J]. 植物研究, 2015, 35(6):836−842. doi:  10.7525/j.issn.1673-5102.2015.06.008

Si J N, Zhou T, Xu F, et al. Salt-responsive microRNAs in Populus euphratica by deep sequencing[J]. Bulletin of Botanical Research, 2015, 35(6): 836−842. doi:  10.7525/j.issn.1673-5102.2015.06.008
[15] 郑彩霞, 邱箭, 姜春宁, 等. 胡杨多形叶气孔特征及光合特性的比较[J]. 林业科学, 2006, 42(8):19−24. doi:  10.3321/j.issn:1001-7488.2006.08.004

Zheng C X, Qiu J, Jiang C N, et al. Comparison of characteristics of stomas and photosynthesis of Populus euphratica polymorphic leaves[J]. Scientia Silvae Sinicae, 2006, 42(8): 19−24. doi:  10.3321/j.issn:1001-7488.2006.08.004
[16] 李萍萍, 曾明, 李文海, 等. 胡杨异形叶抗氧化能力的比较[J]. 北京林业大学学报, 2019, 41(8):76−83.

Li P P, Zeng M, Li W H, et al. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2019, 41(8): 76−83.
[17] 韩航, 单凌飞, 王双蕾, 等. 胡杨异形叶光合作用特性研究[J]. 中央民族大学学报(自然科学版), 2019, 28(2):5−11.

Han H, Shan L F, Wang S L, et al. Photosynthesis characteristics of heteromorphic leaves of Populus euphratica[J]. Journal of MUC (Natural Sciences Edition), 2019, 28(2): 5−11.
[18] Hao J, Yue N, Zheng C. Analysis of changes in anatomical characteristics and physiologic features of heteromorphic leaves in a desert tree, Populus euphratica[J]. Acta Physiologiae Plantarum, 2017, 39(8): 160−170. doi:  10.1007/s11738-017-2467-9
[19] 岳宁, 郑彩霞, 白雪, 等. 胡杨异形叶的蛋白质组学研究[J]. 中国生物工程杂志, 2009, 29(9):40−44.

Yue N, Zheng C X, Bai X, et al. Proteomics analysis of heteromorphic leaves of Populus euphratica Oliv.[J]. China Biotechnology, 2009, 29(9): 40−44.
[20] Bo X, Wang S. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA[J]. Bioinformatics, 2005, 21(8): 1401−1402. doi:  10.1093/bioinformatics/bti211
[21] Wang H L, Lan L, Sha T, et al. Evaluation of appropriate reference genes for reverse transcription-quantitative PCR studies in different tissues of a desert poplar via comparision of different algorithms[J]. International Journal of Molecular Sciences, 2015, 16(9): 20468−20491. doi:  10.3390/ijms160920468
[22] Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ CT method[J]. Methods, 2000, 25(4): 402−408.
[23] Nakayama H, Nakayama N, Seiki S, et al. Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American Lake Cress[J]. The Plant Cell Online, 2015, 26(12): 4733−4748.
[24] Nakayama H, Sinha N R, Kimura S. How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues[J]. Frontiers in Plant Science, 2017, 8: 10−17.
[25] Zhang B, Pan X, Cobb G P, et al. Plant microRNA: a small regulatory molecule with big impact[J]. Developmental Biology, 2006, 289(1): 3−16.
[26] Zeng M, He S, Hao L, et al. Conjoint analysis of genome-wide lncRNA and mRNA expression of heteromorphic leaves in response to environmental heterogeneity in Populus euphratica[J]. International Journal of Molecular Sciences, 2019, 20: 5148−5871. doi:  10.3390/ijms20205148
[27] 白雪, 张淑静, 郑彩霞, 等. 胡杨多态叶光合和水分生理的比较[J]. 北京林业大学学报, 2011, 33(6):47−52.

Bai X, Zhang S J, Zheng C X, et al. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47−52.
[28] 王海珍, 韩路, 徐雅丽, 等. 胡杨异形叶叶绿素荧光特性对高温的响应[J]. 生态学报, 2011, 31(9):2444−2453.

Wang H Z, Han L, Xu Y L, et al. Response of chlorophyll fluorescence characteristics of Populus euphratica heteromorphic leaves to high temperature[J]. Acta Ecologica Sinica, 2011, 31(9): 2444−2453.
[29] Abel K, Anderson R A, Shears S B. Phosphatidylinositol and inositol phosphate metabolism[J]. Journal of Cell Science, 2001, 114: 2207−2208.
[30] Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells[J]. Annual Review of Plant Biology, 2008, 59(1): 683−707. doi:  10.1146/annurev.arplant.59.103006.093219
[31] Liu Y, Li X, Chen G, et al. Epidermal micromorphology and mesophyll structure of Populus euphratica heteromorphic leaves at different development stages[J/OL]. PLoS ONE, 2015, 10: e137701 (2015−10−09) [2018−05−21]. https://doi.org/10.1371/jounal.pone.0137701.
[32] Mannuss A, Trapp O, Puchta H. Gene regulation in response to DNA damage[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2): 154−165. doi:  10.1016/j.bbagrm.2011.08.003
[33] Chen J, Zhang J, Hu J, et al. Integrated regulatory network reveals the early salt tolerance mechanism of Populus euphratica[J]. Scientific Reports, 2017, 7(1): 6769−6781. doi:  10.1038/s41598-017-05240-0
[34] 曾幼玲, 杨瑞瑞. 植物miRNA的生物学特性及在环境胁迫中的作用[J]. 中国农业科学, 2016, 49(19):3671−3682. doi:  10.3864/j.issn.0578-1752.2016.19.001

Zeng Y L, Yang R R. Biological characteristics of plant microRNAs and actions in environmental stresses[J]. Scientia Agricultura Sinica, 2016, 49(19): 3671−3682. doi:  10.3864/j.issn.0578-1752.2016.19.001
[35] 韦懿, 陈志辉, 陈国兴, 等. 超量表达水稻miRNA 167A调控株型的研究[J]. 分子植物育种, 2011, 9(4):390−396. doi:  10.3969/mpb.009.000390

Wei Y, Chen Z H, Chen G X, et al. Study of overexpressing miRNA167a to regulate the architecture in Oryza sativa[J]. Molecular Plant Breeding, 2011, 9(4): 390−396. doi:  10.3969/mpb.009.000390
[36] Merelo P, Ram H, Caggiano M P, et al. Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11973−11978. doi:  10.1073/pnas.1516110113
[37] 张文政, 韩颖颖, 严钦骅, 等. 拟南芥miR172a-1/b-2/c对多种胁迫响应的研究[J]. 复旦学报( 自然科学版), 2011, 50(3):328−333.

Zhang W Z, Han Y Y, Yan Q H, et al. Research of arabidopsis miR172a-1/b-2/c in response to multiple stresses[J]. Journal of Fudan University (Natural Science), 2011, 50(3): 328−333.
[38] Li W, Wang T, Zhang Y, et al. Overexpression of soybean miR172c confers water deficit and salt tolerance but ABA sensitivity in transgenic Arabidopsis thaliana[J]. Journal of Experimental Botany, 2015, 67(1): 175−194.
[39] 栾明达. 玉米miR169及其靶基因NF-YA转录因子功能的初步研究[D]. 绵阳: 西南科技大学, 2014.

Luan M D. Research of zma-miR169s and their targeted transcription factor ZmNF-YAs in maize [D]. Mianyang: Southwest University of Science and Technology, 2014.
[40] 叶超楠, 沈栎阳, 方春, 等. 热胁迫下水稻miR396家族及靶基因OsGRFs的表达研究[J]. 农业生物技术学报, 2018, 26(3):393−400.

Ye C N, Shen L Y, Fang C, et al. Expression analysis of rice (Oryza sativa) miR396 family and target gene OsGRFs under heat stress[J]. Journal of Agricultural Biotechnology, 2018, 26(3): 393−400.
[41] Lian C, Li Q, Yao K, et al. Populus trichocarpa PtNF-YA9, a multifunctional transcription factor, regulates seed germination, abiotic stress, plant growth and development in Arabidopsis [J/OL]. Frontiers in Plant Science, 2018, 9: 1403 (2018−07−09)[2018−12−20]. https://doi.org/10.3389/fpls.2018.01403.
[42] Yan D, Sha T, Xia X, et al. Identification of PeNF-YB1 expressed in leaves of Populus euphratica responsive to drought[J]. Chinese Agricultural Science Bulletin, 2012, 28(19): 6−11.
[43] Yi A, Yangyan Z, Xiao H, et al. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar[J]. Journal of Experimental Botany, 2019, 71(6): 1969−1984.
[44] 任逸秋, 贾会霞, 郭英华, 等. 胡杨F-Box基因克隆和功能分析[J]. 分子植物育种, 2017, 15(5):1655−1662.

Ren Y Q, Jia H X, Guo Y H, et al. Identification and functional analysis of F-Box gene from Populus euphratica[J]. Molecular Plant Breeding, 2017, 15(5): 1655−1662.
[45] Zhang L Y, Bai M Y, Wu J, et al. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J]. Plant Cell, 2009, 21(12): 3767−3780. doi:  10.1105/tpc.109.070441
[46] Dong Y, Wang C, Han X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in arabidopsis[J]. Biochemical & Biophysical Research Communications, 2014, 450(1): 453−458.
[47] 钱泽勇, 张会龙, 荆晓姝, 等. 胡杨Ring Finger E3连接酶PeRH2提高烟草耐旱机制研究[J]. 基因组学与应用生物学, 2015, 34(3):454−463.

Qian Z Y, Zhang H L, Jing X S, et al. Overexpression of RING finger E3-ligase gene PeRH2 from Populus euphratica in tobacco enhances drought tolerance in transgenic plants[J]. Genomics and Applied Biology, 2015, 34(3): 454−463.
[48] Fang H, Wang H L, Li H G, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus[J]. Plant Biotechnology Journal, 2018, 16(8): 1514−1528. doi:  10.1111/pbi.12893
[49] Silva P, Faanha A R, Rui M T, et al. Role of tonoplast proton pumps and Na+/H+ antiport system in salt tolerance of Populus euphratica Oliv.[J]. Journal of Plant Growth Regulation, 2010, 29(1): 23−34. doi:  10.1007/s00344-009-9110-y
[50] Wang L, Feng X, Zhao H, et al. Functional analysis of the Na+, K+/H+ antiporter PeNHX3 from the tree halophyte Populus euphratica in yeast by model-guided mutagenesis[J]. Plos One, 2014, 9(8): e104147(2015−02−03)[2018−04−22]. https://doi.org/10.1371/journal.pone.0117869.
[51] Wu Y, Meng K, Liang X. Distinct patterns of natural selection in Na+/H+ antiporter genes in Populus euphratica and Populus pruinosa[J]. Ecology & Evolution, 2017, 7(1): 82−91.
[52] Pighin J A, Huanquan Z, Balakshin L J, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306: 702−704. doi:  10.1126/science.1102331
[53] Ningmei C, Buerbatu S, Shuai T, et al. Overexpression of the ABC transporter gene TsABCG11 increases cuticle lipids and abiotic stress tolerance in arabidopsis[J]. Plant Biotechnology Reports, 2018, 12(5): 303−313. doi:  10.1007/s11816-018-0495-6
[54] Yan D H, Fenning T, Tang S, et al. Genome-wide transcriptional response of Populus euphratica to long-term drought stress[J]. Plant Science, 2012, 195: 24−35. doi:  10.1016/j.plantsci.2012.06.005
[55] Wang J Y, Wang J, He Y. A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana[J]. Gene, 2013, 521(2): 265−273. doi:  10.1016/j.gene.2013.03.068
[56] Lu X, Zhang X, Duan H, et al. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants[J]. Physiologia Plantarum, 2018, 162(1): 73−97. doi:  10.1111/ppl.12613