[1] Hill C A S. Wood modification: an update[J]. Bioresources, 2011, 6(2): 918−919.
[2] Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science & Technology, 2004, 37(5): 349−361.
[3] 刘君良, 江泽慧, 孙家杰. 酚醛树脂处理杨树木材物理力学性能测试[J]. 林业科学, 2002, 38(4):176−180. doi:  10.3321/j.issn:1001-7488.2002.04.028.

Liu J L, Jiang Z H, Sun J J. Measurement the physical-mechanical properties of poplar lumber by PF resin treatment[J]. Scientia Silvae Sinicae, 2002, 38(4): 176−180. doi:  10.3321/j.issn:1001-7488.2002.04.028.
[4] 谢延军, 符启良, 王清文, 等. 木材化学功能改良技术进展与产业现状[J]. 林业科学, 2012, 48(9):154−163. doi:  10.11707/j.1001-7488.20120924.

Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: the state of the art of technologies and commercialization[J]. Scientia Silvae Sinicae, 2012, 48(9): 154−163. doi:  10.11707/j.1001-7488.20120924.
[5] 徐康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响[J]. 林业科学, 2018, 54(4):84−92. doi:  10.11707/j.1001-7488.20180410.

Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation[J]. Scientia Silvae Sinicae, 2018, 54(4): 84−92. doi:  10.11707/j.1001-7488.20180410.
[6] 周永东. 低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D]. 北京: 中国林业科学研究院, 2009.

Zhou Y D. Study on drying characteristics and mechanism of poplar lumber strengthened with low molecular weight phenol-formaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2009.
[7] Militz H, Lande S. Challenges in wood modification technology on the way to practical applications[J]. Wood Material Science & Engineering, 2009, 4(1−2): 23−29.
[8] 王舒. 浸渍处理人工林杉木干燥特性的研究[D]. 北京: 北京林业大学, 2009.

Wang S. Study on the drying characteristic of resin-impregnated Chinese fir[D]. Beijing: Beijing Forestry Universty, 2009.
[9] 彭冲, 张振伟, 夏朝彦, 等. 浸渍毛白杨锯材的干燥工艺[J]. 福建农林大学学报(自然科学版), 2015, 44(3):329−332.

Peng C, Zhang Z W, Xia C Y, et al. Optimized drying process for resin impregnated Aspen wood[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(3): 329−332.
[10] Li Y, Li X, Quan P, et al. Investigation of drying characteristics in superheated steam drying of UF-impregnated Chinese fir[J]. European Journal of Wood & Wood Products, 2018, 76(2): 583−589.
[11] 钱俊, 叶良明, 余肖红, 等. 速生杉木的改性研究—UF树脂浸渍后热压法改性[J]. 木材工业, 2001, 15(2):14−16. doi:  10.3969/j.issn.1001-8654.2001.02.005.

Qian J, Ye L M, Yu X H, et al. Modification on fast-growing Chinese fir by hot-pressing after impregnated with UF resin[J]. China Wood Industry, 2001, 15(2): 14−16. doi:  10.3969/j.issn.1001-8654.2001.02.005.
[12] Wu G F, Lang Q A, Qu P, et al. Eeffect of chemical modification and hot-press dring on poplar wood[J]. BioResources, 2010, 5(4): 2581−2590.
[13] Li W, Zhang L, Peng J, et al. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops & Products, 2008, 28(2): 143−154.
[14] Shams M I, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin (I): effects of pressing pressure and pressure holding[J]. Journal of Wood Science, 2004, 50(4): 337−342. doi:  10.1007/s10086-003-0570-6.
[15] Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 9(76): 2749−2766. doi:  10.1098/rsif.2012.0341.
[16] Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi:  10.1007/s00226-012-0514-7.
[17] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
[18] Siimer K, Kaljuvee T, Christjanson P, et al. Changes in curing behaviour of aminoresins during storage[J]. Journal of Thermal Analysis & Calorimetry, 2005, 80(1): 123−130.
[19] He G, Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science, 2005, 95(2): 185−192. doi:  10.1002/app.21115.
[20] 徐康. MUF树脂浸渍杨木干燥过程中水分迁移和树脂固化特性研究[D]. 北京: 中国林业科学研究院, 2017.

Xu K. Moisture transfer and resin curing characteristics of MUF impregnated poplar wood during drying process[D]. Beijing: Chinese Academy of Forestry, 2017.
[21] Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin impregnated poplar wood using low field nuclear magnetic resonance[J/OL]. Drying Technology, 2020 [2020−08−23]. http://doi.org/10.1080/07373937.2020.1719503.
[22] Kamal M R, Sourour S. Kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering and Science, 2010, 13(1): 59−64.
[23] 何平笙. 热固性树脂及树脂基复合材料的固化[M]. 合肥: 中国科技大学出版社, 2011.

He P S. Curing of thermosetting resins and resin matrix composites[M]. Hefei: Press of University of Science and Technology of China, 2011.
[24] 吴晓青, 李嘉禄, 康庄, 等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J]. 固体火箭技术, 2007, 30(3):264−268. doi:  10.3969/j.issn.1006-2793.2007.03.020.

Wu X Q, Li J L, Kang Z, et al. Study on curing kinetics of TDE-85 epoxy resin by means of DSC and DMA[J]. Journal of Solid Rocket Technology, 2007, 30(3): 264−268. doi:  10.3969/j.issn.1006-2793.2007.03.020.
[25] 王辉, 杜官本, 雷洪. 高性能三聚氰胺–尿素–甲醛共缩聚树脂研制(1):缩聚反应后期尿素的影响[J]. 化学与粘合, 2010, 32(2):45−49. doi:  10.3969/j.issn.1001-0017.2010.02.014.

Wang H, Du G B, Lei H. Development of high-performance melamine-urea-formaldehyde co-condensation resin (1): influence of urea addition at later condensation reaction[J]. Chemistry and Adhesion, 2010, 32(2): 45−49. doi:  10.3969/j.issn.1001-0017.2010.02.014.
[26] Pizzi A, Panamgama L A. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. Journal of Applied Polymer Science, 1995, 58(1): 109−115. doi:  10.1002/app.1995.070580112.
[27] Jones F N, Chu G, Samaraweera U. Recent studies of self-condensation and co-condensation of melamine-formaldehyde resins; cure at low temperatures[J]. Progress in Organic Coatings, 1994, 24(1−4): 189−208. doi:  10.1016/0033-0655(94)85014-3.
[28] 潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011.

Pan Z R. Polymer chemistry[M]. Beijing: Chemical Industry Press, 2011.
[29] 刘乃亮, 齐暑华, 理莎莎, 等. 高固含量聚醚醚酮改性酚醛树脂固化动力学研究[J]. 中国胶粘剂, 2011, 20(3):16−20. doi:  10.3969/j.issn.1004-2849.2011.03.005.

Liu N L, Qi S H, Li S S, et al. Study on curing kinetics of high solid content polyetheretherketone modified phenolic resin[J]. China Adhesives, 2011, 20(3): 16−20. doi:  10.3969/j.issn.1004-2849.2011.03.005.
[30] 陈玉竹. 脲醛树脂预固化特性及控制机理研究[D]. 北京: 中国林业科学研究院, 2015.

Chen Y Z. Pre-curing characters and regulating mechanism of uea-frmaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2015.
[31] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702−1706. doi:  10.1021/ac60131a045.
[32] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881−1886.
[33] 郝朝瑜, 王鑫阳, 赵庆彪, 等. 低变质程度煤自燃特性的改进着火活化能方法研究[J]. 中国安全科学学报, 2013, 23(10):27−32. doi:  10.3969/j.issn.1003-3033.2013.10.005.

Hao C Y, Wang X Y, Zhao Q B, et al. Study on an improved ignition activation energy method for evaluating spontaneous combustion characteristics of low metamorphic coal[J]. China Safety Science Journal, 2013, 23(10): 27−32. doi:  10.3969/j.issn.1003-3033.2013.10.005.