[1] 李赟, 温小荣, 佘光辉, 等. 基于UAV高分影像的杨树冠幅提取及相关性研究[J]. 林业科学研究, 2017, 30(4):653−658.

Li Y, Wen X R, She G H, et al. Study on poplar crown extraction and correlation based on UAV high resolution image[J]. Forest Research, 2017, 30(4): 653−658.
[2] 于旭宅, 王瑞瑞, 陈伟杰. 改进分水岭算法在无人机遥感影像树冠分割中的应用[J]. 福建农林大学学报(自然科学版), 2018, 47(4):428−434.

Yu X Z, Wang R R, Chen W J. Forest canopy segmentation of UAV remote sensing images using improved watershed algorithm[J]. Journal of Fujian Agricultural and Forestry University (Natural Science Edition), 2018, 47(4): 428−434.
[3] 唐晏. 基于无人机采集图像的植被识别方法研究[D]. 成都: 成都理工大学, 2014.

Tang Y. Research on the vegetation identification method based on UAV image acquisition[D]. Chengdu: Chengdu University of Technology, 2014.
[4] 付凯婷. 无人机遥感技术估算桉树蓄积量的研究[D]. 南宁: 广西大学, 2015.

Fu K T. UAV Remote sensing technology to estimate the research of eucalyptus volume[D]. Nanning: Guangxi University, 2015.
[5] Brandtberg T, Walter F. Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis[J]. Machine Vision and Applications, 1998, 11(2): 64−73. doi:  10.1007/s001380050091
[6] Fritz A, Kattenborn T, Koch B. UAV-based photogrammetric point clouds-tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds[C]//International archives of the photogrammetry, remote sensing and spatial information sciences. Rostock: ISPRS, 2013.
[7] Grznárová A, Mokroš M, Surový P, et al. The crown diameter estimation from fixed wing type of UAV imagery [C]//International archives of the photogrammetry, remote sensing and spatial information sciences. Enschede: ISPRS, 2019.
[8] 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5):180−187. doi:  10.11707/j.1001-7488.20190520

Li D, Zhang J J, Zhao M X. Extraction of stand factors in UAV image based on FCM and watershed algorithm[J]. Scientia Silvae Sinicae, 2019, 55(5): 180−187. doi:  10.11707/j.1001-7488.20190520
[9] 王枚梅, 林家元, 林沂, 等. 基于无人机可见光影像的亚高山针叶林树冠参数信息自动提取[J]. 林业资源管理, 2017(4):82−88.

Wang M M, Lin J Y, Lin Y, et al. Subalpine coniferous forest crown information automatic extraction based on optical UAV remote sensing imagery[J]. Forest Resources Management, 2017(4): 82−88.
[10] 毛学刚, 陈文曲, 魏晶昱, 等. 分割尺度对面向对象树种分类的影响及评价[J]. 林业科学, 2017, 53(12):73−83. doi:  10.11707/j.1001-7488.20171208

Mao X G, Chen W Q, Wei J Y, et al. Effect and evaluation of segmentation scale on object-based forest species classification[J]. Scientia Silvae Sinicae, 2017, 53(12): 73−83. doi:  10.11707/j.1001-7488.20171208
[11] 冯静静, 张晓丽, 刘会玲. 基于灰度梯度图像分割的单木树冠提取研究[J]. 北京林业大学学报, 2017, 39(3):16−23.

Feng J J, Zhang X L, Liu H L. Single tree crown extraction based on gray gradient image segmentation[J]. Journal of Beijing Forestry University, 2017, 39(3): 16−23.
[12] 史洁青, 冯仲科, 刘金成. 基于无人机遥感影像的高精度森林资源调查系统设计与试验[J]. 农业工程学报, 2017, 33(11):82−90. doi:  10.11975/j.issn.1002-6819.2017.11.011

Shi J Q, Feng Z K, Liu J C. Design and experiment of high precision forest resource investigation system based on UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 82−90. doi:  10.11975/j.issn.1002-6819.2017.11.011
[13] 穆喜云, 张秋良, 刘清旺, 等. 基于机载LiDAR数据的林分平均高及郁闭度反演[J]. 东北林业大学学报, 2015, 43(9):84−89. doi:  10.3969/j.issn.1000-5382.2015.09.017

Mu X Y, Zhang Q L, Liu Q W, et al. Inversion of forest height and canopy closure using airborne LiDAR data[J]. Journal of Northeast Forestry University, 2015, 43(9): 84−89. doi:  10.3969/j.issn.1000-5382.2015.09.017
[14] 李崇贵, 蔡体久. 森林郁闭度对蓄积量估测的影响规律[J]. 东北林业大学学报, 2006, 34(1):15−17. doi:  10.3969/j.issn.1000-5382.2006.01.006

Li C G, Cai T J. Effect of forest canopy density on stock volume estimation[J]. Journal of Northeast Forestry University, 2006, 34(1): 15−17. doi:  10.3969/j.issn.1000-5382.2006.01.006
[15] 郭昱杉, 刘庆生, 刘高焕, 等. 基于标记控制分水岭分割方法的高分辨率遥感影像单木树冠提取[J]. 地球信息科学学报, 2016, 18(9):1259−1266.

Guo Y S, Liu Q S, Liu G H, et al. Individual tree crown extraction of high resolution image based on marker-controlled watershed segmentation method[J]. Journal of Geo-Information Science, 2016, 18(9): 1259−1266.
[16] 付尧. 杉木人工林生态系统生物量及碳储量定量估测[D]. 北京: 北京林业大学, 2016.

Fu Y. Quantitative estimation of biomass and carbon storage for Chinese fir plantation[D]. Beijing: Beijing Forestry University, 2016.
[17] 孙鸿博, 杨扬, 郭可贵, 等. 基于无人机多源遥感的输电线下树冠分割方法研究[J]. 中南林业调查规划, 2018, 37(2):30−33, 35.

Sun H B, Yang Y, Guo K G, et al. Research on the method of subdivision canopy segmentation based on UAV multi-source remote sensing[J]. Central South Forest Inventory and Planning, 2018, 37(2): 30−33, 35.
[18] 何艺, 周小成, 黄洪宇, 等. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1):168−176.

He Y, Zhou X C, Huang H Y, et al. Counting tree number in subtropical forest districts based on UAV remote sensing images[J]. Remote Sensing Technology and Application, 2018, 33(1): 168−176.
[19] 王伟. 无人机影像森林信息提取与模型研建[D]. 北京: 北京林业大学, 2015.

Wang W. Forest information extraction and model building based on UAV image[D]. Beijing: Beijing Forestry University, 2015.
[20] 肖武, 任河, 吕雪娇, 等. 基于无人机遥感的高潜水位采煤沉陷湿地植被分类[J]. 农业机械学报, 2019, 50(2):177−186. doi:  10.6041/j.issn.1000-1298.2019.02.020

Xiao W, Ren H, Lü X J, et al. Vegetation classification by using UAV remote sensing in coal mining subsidence wetland with high ground-water level[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 177−186. doi:  10.6041/j.issn.1000-1298.2019.02.020
[21] 李赟. 基于UAV高分影像的林木冠幅提取与蓄积量估测研究[D]. 南京: 南京林业大学, 2017.

Li Y. Study on crown extraction and forest volume estimation based on UAV high resolution image[D]. Nanjing: Nanjing Forestry University, 2017.
[22] 穆亚南, 丁丽霞, 李楠, 等. 基于面向对象和随机森林模型的杭州湾滨海湿地植被信息提取[J]. 浙江农林大学学报, 2018, 35(6):1088−1097. doi:  10.11833/j.issn.2095-0756.2018.06.012

Mu Y N, Ding L X, Li N, et al. Classification of coastal wetland vegetation in Hangzhou Bay with an object-oriented, random forest model[J]. Journal of Zhejiang A&F University, 2018, 35(6): 1088−1097. doi:  10.11833/j.issn.2095-0756.2018.06.012
[23] 陈济才, 文学虎, 李国明. 基于面向对象的高分影像地表覆盖典型要素快速提取对比研究[J]. 遥感信息, 2014, 29(4):37−40. doi:  10.3969/j.issn.1000-3177.2014.04.008

Chen J C, Wen X H, Li G M. Fast extraction of typical features of land-cover based on object-oriented technique with high-resolution remote sensing imagery[J]. Remote Sensing Information, 2014, 29(4): 37−40. doi:  10.3969/j.issn.1000-3177.2014.04.008
[24] Trimble Germany GmbH. eCognition developer 9.0 reference book[Z]. Munich: Trimble Germany GmbH, 2014.
[25] 吴见, 彭道黎. 基于面向对象的QuickBird影像退耕地树冠信息提取[J]. 光谱学与光谱分析, 2010, 30(9):2533−2536. doi:  10.3964/j.issn.1000-0593(2010)09-2533-04

Wu J, Peng D L. Tree-crown information extraction of farmland returned to forests using QuickBird image based on object-oriented approach[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2533−2536. doi:  10.3964/j.issn.1000-0593(2010)09-2533-04
[26] 毛学刚, 邢秀丽, 李佳蕊, 等. 基于航空正射影像的面向对象林隙识别[J]. 林业科学, 2019, 55(2):87−96. doi:  10.11707/j.1001-7488.20190209

Mao X G, Xing X L, Li J R, et al. Object-oriented recognition of forest gap based on aerial orthophoto[J]. Scientia Silvae Sinicae, 2019, 55(2): 87−96. doi:  10.11707/j.1001-7488.20190209