[1] 刘四海, 曾伟生. 马尾松宏观尺度单木生长模型研究[J]. 林业资源管理, 2017(2):28−33.

Liu S H, Zeng W S. Study on macroscopic single-tree growth model of masson pine[J]. Forest Resources Management, 2017(2): 28−33.
[2] 甘世书, 贺鹏, 肖前辉, 等. 利用分段建模方法建立海南省主要树种立木材积模型[J]. 中南林业科技大学学报, 2018, 38(5):18−22.

Gan S S, He P, Xiao Q H, et al. Using the segmentation modeling method to establish the timber product model of main tree species in Hainan Province[J]. Journal of Central South University of Forestry and Technology, 2018, 38(5): 18−22.
[3] 张茂震, 王广兴, 刘安兴. 基于森林资源连续清查资料估算的浙江省森林生物量及生产力[J]. 林业科学, 2009, 45(9):13−17. doi:  10.3321/j.issn:1001-7488.2009.09.003

Zhang M Z, Wang G X, Liu A X. Forest biomass and productivity in Zhejiang Province based on continuous inventory data of forest resources[J]. Scientia Silvae Sinica, 2009, 45(9): 13−17. doi:  10.3321/j.issn:1001-7488.2009.09.003
[4] 王超, 尤海舟, 毕君. 小五台山自然保护区红桦林的群落结构与演替[J]. 中南林业科技大学学报, 2017, 37(5):69−73.

Wang C, You H Z, Bi J. Community structure and succession of red birch forest in Xiaowutai Mountain Nature Reserve[J]. Journal of Central South University of Forestry and Technology, 2017, 37(5): 69−73.
[5] 杜纪山. 用二类调查样地建立落叶松单木直径生长模型[J]. 林业科学研究, 1991, 12(2):160−164.

Du J S. Establishing individual tree diameter growth model for larch using sample survey plots[J]. Forestry Research, 1991, 12(2): 160−164.
[6] 马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究:Ⅰ.直径生长量模型[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):99−105.

Ma W, Lei X D, Xu G, et al. Study on the growth model of Mongolian natural forest single tree (I): diameter growth model[J]. Journal of Northwest A&F University (Nat Sci Ed), 2015, 43(2): 99−105.
[7] 刘洋, 亢新刚, 郭艳荣, 等. 长白山主要树种直径生长的多元回归预测模型:以云杉为例[J]. 东北林业大学学报, 2012, 40(2):1−4. doi:  10.3969/j.issn.1000-5382.2012.02.001

Liu Y, Kang X G, Guo Y R, et al. Multivariate regression prediction model for diameter growth of main tree species in Changbai Mountain: taking spruce as an example[J]. Journal of Northeast Forestry University, 2012, 40(2): 1−4. doi:  10.3969/j.issn.1000-5382.2012.02.001
[8] 李春明.混合效应模型在森林生长模拟研究中的应用[D].北京: 中国林业科学研究院, 2010.

Li C M. Application of mixed effect model in forest growth simulation research[D]. Beijing: Chinese Academy of Forestry, 2010.
[9] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi:  10.11707/j.1001-7488.20120311

LI C M. DBH growth of Chinese fir forest based on two-level linear mixed effect model[J]. Scientia Silvae Sinica, 2012, 48(3): 66−73. doi:  10.11707/j.1001-7488.20120311
[10] 彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3):19−27.

Peng W, Li F R, Dong L H. Single tree growth model of Larix olgensis in Heilongjiang Province[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(3): 19−27.
[11] Budhathoki C B, Lynch T B, Guldin J M. Individual tree growth models for natural even-aged short leaf pine (Pinus echinata Mill.)[J]. Southern Journal of Applied Forestry, 2006, 32(1): 5−11. doi:  10.1093/sjaf/32.1.5
[12] Fabiancc U, Williamw O. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model[J]. Forest Ecology & Management, 2008, 256(3): 438−445. doi:  10.1016/j.foreco.2008.04.046
[13] 王少杰, 邓华锋, 向玮, 等. 基于混合模型的油松林分蓄积量预测模型的建立[J]. 西北农林科技大学学报(自然科学版), 2018, 46(2):29−38, 46.

Wang S J, Deng H F, Xiang W, et al. Establishment of prediction model of Pinus tabulaeformis stand volume based on hybrid model[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(2): 29−38, 46.
[14] 段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):163−169.

Duan G S, Li X D, Feng Y, et al. Mixed effect model of natural secondary forest tree height curve of Larix principis-rupprechtii[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(2): 163−169.
[15] 樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9):2831−2839.

Fan W, Xu C H, Cui J, et al. Comparison of high-diameter model of Chinese fir tree in Dabieshan Area based on mixed effect[J]. The Journal of Applied Ecology, 2017, 28(9): 2831−2839.
[16] 李春明, 唐守正. 基于非线性混合模型的落叶松云冷杉林分断面积模型[J]. 林业科学, 2010, 46(7):106−113. doi:  10.11707/j.1001-7488.20100716

Li C M, Tang S Z. A model for the fractal area of larch-fir-fir forest based on nonlinear mixed model[J]. Scientia Silvae Sinica, 2010, 46(7): 106−113. doi:  10.11707/j.1001-7488.20100716
[17] Adame P, Hynynen J, Canellas I, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenacia Willd.) coppices[J]. Forest Ecology and Management, 2008, 255(3/4): 1011−1022.
[18] Rafael C, Gregorio M. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Silva Fennica, 2005, 39(1): 37−54.
[19] 柏云龙. 天山云杉群落结构及物种多样性研究[D]. 合肥: 安徽农业大学, 2013.

Bai Y L. Study on community structure and species diversity of Picea schrenkiana[D]. Hefei: Anhui Agricultural University, 2013.
[20] 王燕, 赵士洞. 天山云杉林生物生产力的地理分布[J]. 植物生态学报, 2000, 24(2):186−190. doi:  10.3321/j.issn:1005-264X.2000.02.011

Wang Y, Zhao S D. Biomass productivity geographical distribution of Picea schrenkiana[J]. Journal of Plant Ecology, 2000, 24(2): 186−190. doi:  10.3321/j.issn:1005-264X.2000.02.011
[21] 郭靖, 齐成, 张东亚, 等. 新疆森林资源现状分析[J]. 防护林科技, 2015(12):69−70.

Guo J, Qi C, Zhang D Y, et al. Current forest resources in Xinjiang[J]. Protection Forest Science and Technology, 2015(12): 69−70.
[22] 郭仲军, 黄继红, 路兴慧, 等. 基于第七次森林资源清查的新疆天然林生态系统服务功能[J]. 生态科学, 2015, 34(4):118−124.

Guo Z J, Huang J H, Lu X H, et al. Xinjiang natural forest ecosystem service function based on the seventh forest resource inventory[J]. Ecological Science, 2015, 34(4): 118−124.
[23] 何相宜, 刘肖肖, 戴伟. 天山云杉林土壤有机碳矿化特征[J]. 西北林学院学报, 2019, 34(2):1−7.

He X Y, Liu X X, Dai W. Characteristics of soil organic carbon mineralization in Picea schrenkiana forest[J]. Journal of Northwest Forestry University, 2019, 34(2): 1−7.
[24] 罗明, 庞峻峰, 李叙勇, 等. 新疆天山云杉林区森林土壤微生物学特性及酶活性[J]. 生态学杂志, 1997, 16(1):27−31.

Luo M, Pang J F, Li X Y, et al. Microbial characteristics and enzyme activities of forest soil in the Picea schrenkiana forest region of Xinjiang[J]. Journal of Ecology, 1997, 16(1): 27−31.
[25] 轩俊伟, 朱静. 天山云杉立地指数地统计空间分析[J]. 林业资源管理, 2017(3):46−50.

Xuan J W, Zhu J. Statistical spatial analysis of Picea schrenkiana site index[J]. Forest Resources Management, 2017(3): 46−50.
[26] 谢锦, 常顺利, 张毓涛, 等. 天山北坡中段云杉林地表水氮磷含量特征[J]. 山地学报, 2017, 35(6):808−815.

Xie J, Chang S L, Zhang Y T, et al. Characteristics of surface nitrogen and phosphorus contents in the spruce forest in the middle section of the northern slope of the Tianshan Mountains[J]. Journal of Mountain Research, 2017, 35(6): 808−815.
[27] 李吉玫, 张毓涛, 李建贵, 等. 模拟氮沉降对天山云杉细根分解及其养分释放的影响[J]. 西北植物学报, 2015, 35(1):182−188. doi:  10.7606/j.issn.1000-4025.2015.01.0182

Li J M, Zhang Y T, Li J G, et al. Effects of simulated nitrogen deposition on fine root decomposition and nutrient release of Picea schrenkiana[J]. Northwest Botanical Journal, 2015, 35(1): 182−188. doi:  10.7606/j.issn.1000-4025.2015.01.0182
[28] Biging G S, Dobbertin M. Evaluation of competition indices in individual tree growth models[J]. Forest Science, 1995, 41(2): 360−377.
[29] Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research, 1986, 16: 1230−1237. doi:  10.1139/x86-218
[30] Martin G L, Ek A R. A comparison of competition measures and growth models for predicting plantation red pin ediameter and height growth[J]. Forest Science, 1984, 30(3): 731−743.
[31] Lorimer C R. Tests of age-independent competition indices f or individual trees in natural hardwood stands[J]. Forest Ecology and Management, 1983, 6: 343−360. doi:  10.1016/0378-1127(83)90042-7
[32] 刘平, 马履一, 王玉涛, 等. 油松中幼人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2):197−201. doi:  10.3969/j.issn.1000-1700.2009.02.016

Liu P, Ma L Y, Wang Y T, et al. Study on the growth model of single diameter DBH in medium and young plantations of Pinus tabulaeformis[J]. Journal of Shenyang Agricultural University, 2009, 40(2): 197−201. doi:  10.3969/j.issn.1000-1700.2009.02.016
[33] 闫明准. 帽儿山地区天然次生林单木生长模型的研究[D].哈尔滨: 东北林业大学, 2009.

Yan M Z. Study on the growth model of natural secondary forest in Maoershan area[D]. Harbin: Northeast Forestry University, 2009.
[34] 卢军. 长白山地区天然混交林单木生长模型的研究[D].哈尔滨: 东北林业大学, 2005.

Lu J. Study on single-wood growth model of natural mixed forest in Changbai Mountain area[D]. Harbin: Northeast Forestry University, 2005.
[35] 王文辉, 马祥庆, 田超, 等. 福建长汀植被覆盖度变化的主要驱动影响因子及影响力分析[J]. 福建农林大学学报(自然科学版), 2017, 46(3):277−283.

Wang W H, Ma X Q, Tian C, et al. Analysis of the main driving influence factors and influence of Changdingzhi’s coverage change in Fujian[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(3): 277−283.
[36] Pinheiro J C, Bates D M. Mixed effects models in S and S-plus[M]. New York: Spring-Verdag, 2000.
[37] 李春明. 混合效应模型在森林生长模拟研究中的应用[D]. 北京: 中国林业科学研究院, 2010.

Li C M. Application of mixed effect model in forest growth simulation research[D]. Beijing: Chinese Academy of Forestry, 2010.
[38] 符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1):23−31.

Fu L Y, Tang S Z, Zhang H R, et al. Single-wood sectional area model of Mongolian forest based on multi-level nonlinear mixed effect[J]. Forestry Science Research, 2015, 28(1): 23−31.
[39] 符利勇, 李永慈, 李春明, 等. 利用2种非线性混合效应模型(2水平)对杉木林胸径生长量的分析[J]. 林业科学, 2012, 48(5):36−43. doi:  10.11707/j.1001-7488.20120506

Fu L Y, Li Y C, Li C M, et al. Analysis of DBH growth of Cunninghamia lanceolata using two kinds of nonlinear mixed effect models (2 levels)[J]. Forestry Science, 2012, 48(5): 36−43. doi:  10.11707/j.1001-7488.20120506
[40] 刘青华, 周志春, 张开明, 等. 造林密度对不同马尾松种源生长和木材基本密度的影响[J]. 林业科学, 2010, 46(9):58−64. doi:  10.11707/j.1001-7488.20100910

Liu Q H, Zhou Z C, Zhang K M, et al. Effects of afforestation density on provenance growth and basic densities of Pinus massoniana[J]. Scientia Silvae Sinica, 2010, 46(9): 58−64. doi:  10.11707/j.1001-7488.20100910
[41] 刘新亮, 章挺, 邱凤英, 等. 造林密度对材用樟树幼林生长和蓄积量的影响[J]. 中南林业科技大学学报, 2019, 39(3):23−27, 60.

Liu X L, Zhang T, Qiu F Y, et al. Effects of afforestation density on the growth and accumulation of young eucalyptus forests[J]. Journal of Central South University of Forestry and Technology, 2019, 39(3): 23−27, 60.
[42] 玉宝, 王百田, 红玉, 等. 晋西人工林综合密度效应分析[J]. 西北林学院学报, 2011, 26(4):167−171.

Yu B, Wang B T, Hong Y, et al. Analysis of the comprehensive density effect of artificial forest in western Shanxi[J]. Journal of Northwest Forestry University, 2011, 26(4): 167−171.
[43] 欧建德, 吴志庄. 峦大杉人工林树冠、根系生长和林木分级的早期密度效应[J]. 东北林业大学学报, 2018, 46(12):15−19. doi:  10.3969/j.issn.1000-5382.2018.12.003

Ou J D, Wu Z Z. Early density effect of canopy, root growth and forest classification of the Chinese fir plantation[J]. Journal of Northeast Forestry University, 2018, 46(12): 15−19. doi:  10.3969/j.issn.1000-5382.2018.12.003
[44] 潘文婷, 夏莘, 夏良放, 等. 造林密度对近熟期鹅掌楸生长和材质的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(5):46−52.

Pan W T, Xia S, Xia L F, et al. Effects of afforestation density on the growth and material of Liriodendron chinense in late maturity[J]. Journal of Nanjing Forestry University (Natural Science), 2018, 42(5): 46−52.
[45] 肖锐, 陈东升, 李凤日, 等. 基于两水平混合模型的杂种落叶松胸径和树高生长模拟[J]. 东北林业大学学报, 2015, 43(5):33−37. doi:  10.3969/j.issn.1000-5382.2015.05.007

Xiao R, Chen D S, Li F R, et al. Simulation of DBH and tree height growth of hybrid larch based on two-level mixed model[J]. Journal of Northeast Forestry University, 2015, 43(5): 33−37. doi:  10.3969/j.issn.1000-5382.2015.05.007
[46] 陈莉莉, 袁志友, 穆兴民, 等. 森林细根生产力研究进展[J]. 西北林学院学报, 2015, 30(3):70−75, 80. doi:  10.3969/j.issn.1001-7461.2015.03.13

Chen L L, Yuan Z Y, Mu X M, et al. Research progress on forest fine root productivity[J]. Journal of Northwest Forestry University, 2015, 30(3): 70−75, 80. doi:  10.3969/j.issn.1001-7461.2015.03.13
[47] 罗恒春, 张超. 滇中地区云南松林分胸径生长模型[J]. 东北林业大学学报, 2018, 46(3):1−6. doi:  10.3969/j.issn.1000-5382.2018.03.001

Luo H C, Zhang C. The model of DBH growth in Yunnan pine forest in central Guizhou[J]. Journal of Northeast Forestry University, 2018, 46(3): 1−6. doi:  10.3969/j.issn.1000-5382.2018.03.001
[48] 杨忠岐, 王小艺, 张翌楠, 等. 以生物防治为主的综合控制我国重大林木病虫害研究进展[J]. 中国生物防治学报, 2018, 34(2):163−183.

Yang Z Q, Wang X Y, Zhang X N, et al. Research progress on the comprehensive control of major forest diseases and insect pests in China based on biological control[J]. Chinese Journal of Biological Control, 2018, 34(2): 163−183.
[49] 孔令伟, 陈祥伟, 鲁绍伟, 等. 华北落叶松林木生长、草本植物多样性及地形因子之间的关系[J]. 水土保持通报, 2014, 34(5):60−66.

Kong L W, Chen X W, Lu S W, et al. The relationship between growth, herbaceous plant diversity and topographic factors of Larix principis-rupprechtii[J]. Journal of Soil and Water Conservation, 2014, 34(5): 60−66.
[50] 李琪, 薛雪, 李剑萍, 等. 1981~2006年固原市榆树自然物候对气候变化的响应[J]. 安徽农业科学, 2010, 38(7):3552−3555. doi:  10.3969/j.issn.0517-6611.2010.07.089

Li Q, Xue X, Li J P, et al. Responses of natural phenology of Eucalyptus in Guyuan City to climate change from 1981 to 2006[J]. Journal of Anhui Agricultural Sciences, 2010, 38(7): 3552−3555. doi:  10.3969/j.issn.0517-6611.2010.07.089
[51] 葛道阔, 曹宏鑫, 夏礼如. 苏北农田林网地区气温年际变化趋势及其对杨树生长的影响[J]. 江苏农业科学, 2008(6):283−284, 302. doi:  10.3969/j.issn.1002-1302.2008.06.126

Ge D K, Cao H X, Xia L R. The interannual variation trend of temperature in farmland forest network in northern Jiangsu and its influence on poplar growth[J]. Jiangsu Agricultural Sciences, 2008(6): 283−284, 302. doi:  10.3969/j.issn.1002-1302.2008.06.126
[52] 范志强, 沈海龙, 王庆成, 等. 水曲柳幼林适生立地条件研究[J]. 林业科学, 2002, 38(2):38−43. doi:  10.3321/j.issn:1001-7488.2002.02.008

Fan Z Q, Shen H L, Wang Q C, et al. Study on the suitable conditions of young ash forests[J]. Scientia Science, 2002, 38(2): 38−43. doi:  10.3321/j.issn:1001-7488.2002.02.008
[53] 王涛, 董利虎, 李凤日. 基于混合效应的杂种落叶松人工幼龄林单木枯损模型[J]. 北京林业大学学报, 2018, 40(10):1−12.

Wang T, Dong L H, Li F R. A single-wood loss model of hybrid larch artificial juvenile forest based on mixed effect[J]. Journal of Beijing Forestry University, 2018, 40(10): 1−12.
[54] 韩艳刚, 雷泽勇, 赵国军, 等. 樟子松人工固沙林冠幅:胸径模型[J]. 干旱区研究, 2018, 35(5):1129−1137.

Han Y G, Lei Z Y, Zhao G J, et al. The crown-sparse model of artificial sand-fixing forest of Pinus sylvestris var. mongolica[J]. Arid Zone Research, 2018, 35(5): 1129−1137.