[1] Anderson E, Hubricht L. Hybridization in Tradescantia (Ⅲ): the ecidence for introgressive for introgressive hybridization[J]. American Journal of Botany, 1938, 25(6): 396−402. doi:  10.1002/j.1537-2197.1938.tb09237.x
[2] Rieseberg L H, Wendel J F. Introgression and its consequences in plants [M]// Harrison R. Hybrid zones and the evolutionary process. Oxford: Oxford University Press, 1993: 70−103.
[3] Rushton B S. Natural hybridization within the genus Quercus L.[J]. Annales des Sciences Forestieres, 1993, 50 (Suppl.): 73−90.
[4] Arnold M L. Evolution through genetic exchange[M]. Oxford: Oxford University Press, 2006.
[5] Jiggins C D, Mallet J. Bimodal hybrid zones and speciation[J]. Trends in Ecology & Evolution, 2000, 15(6): 250−255.
[6] Hamrick J L. Plant population genetics, breeding and genetic resources[M]. Sunderland: Sinauer Associates, 1990.
[7] Kremer A, Petit R. Gene diversity in natural populations of oak species[J]. Annales des Sciences Forestières, 1993, 50: 186−202. doi:  10.1051/forest:19930717
[8] Quang N D, Ikeda S, Harada K. Nucleotide variation in Quercus crispula Blume[J]. Heredity, 2008, 101(2): 166−174. doi:  10.1038/hdy.2008.42
[9] Arnold M L, Ballerini E S, Brothers A N. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana irises[J]. Heredity, 2012, 108(3): 159−166. doi:  10.1038/hdy.2011.65
[10] Eaton D A, Hipp A L, González-Rodríguez A, et al. Historical introgression among the American live oaks and the comparative nature of tests for introgression[J]. Evolution, 2015, 69(10): 2587−2601.
[11] Dow B D, Ashley M V. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites[J]. Journal of Heredity, 1998, 89(1): 62−70. doi:  10.1093/jhered/89.1.62
[12] Muir G, Fleming C C, Schlotterer C, et al. Species status of hybridizing oaks[J]. Nature, 2000, 405: 1016. doi:  10.1038/35016640
[13] Steinhoff S. Results of species hybridization with Quercus robur L. and Quercus petraea (Matt) Liebl[J]. Annales des Sciences Forestieres, 1993, 50 (Suppl.): 137−143.
[14] Lefort E, Lally M, Thompson D. Morphological traits, microsatellite fingerprinting and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally Ireland[J]. Silvae Genetica, 1998, 473(176): 5−6.
[15] Lopez-Aljorna A, Angeles B M, Aguinagalde I, et al. Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers[J]. Annales of Sciences Forestieres, 2007, 64(7): 773−779.
[16] Moran E V, Willis J, Clark J S. Genetic evidence for hybridization in red oaks (Quercus Sect. Lobatae, Fagaceae)[J]. American Journal of Botany, 2012, 99(1): 92−100. doi:  10.3732/ajb.1100023
[17] Petit R J, Csaikl U M, Bordács S, et al. Chloroplast DNA variation in European white oaks[J]. Forest Ecology and Management, 2002, 156(1): 5−26.
[18] Antonecchia G, Fortini P, Lepais O, et al. Genetic structure of a natural oak community in central Italy: evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae)[J]. Annals of Forest Research, 2015, 57(2): 205−216.
[19] Salvini D, Bruschi P, Fineschi S, et al. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting[J]. Plant Biology, 2009, 11(5): 758−765. doi:  10.1111/j.1438-8677.2008.00158.x
[20] Lepais O, Pettt R J, Guichoux E, et al. Species relative abundance and direction of introgression in oaks[J]. Molecular Ecology, 2009, 18(10): 2228−2242. doi:  10.1111/j.1365-294X.2009.04137.x
[21] 厉月桥, 李迎超, 吴志庄. 中国北方栎属植物资源调查与区划[J]. 林业资源管理, 2013(4):88−93. doi:  10.3969/j.issn.1002-6622.2013.04.017

Li Y Q, Li Y C, Wu Z Z. Study on investigation and division of the resources of Quercus in northern China[J]. Forest Resources Management, 2013(4): 88−93. doi:  10.3969/j.issn.1002-6622.2013.04.017
[22] 李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29−36. doi:  10.3321/j.issn:1001-7488.2003.05.005

Li W Y, Gu W C, Zhou S L. AFLP analysis on genetic diversity of Quercus mongolica populations[J]. Scientia Silvae Sinicae, 2003, 39(5): 29−36. doi:  10.3321/j.issn:1001-7488.2003.05.005
[23] 徐小林, 徐立安, 黄敏仁, 等. 栓皮栎天然群体SSR遗传多样性研究[J]. 遗传, 2004, 26(5):683−688. doi:  10.3321/j.issn:0253-9772.2004.05.023

Xu X L, Xu L A, Huang M R, et al. Genetic diversity of microsatellites (SSRs) of natural populations of Quercus variabilis[J]. Hereditas (Beijing), 2004, 26(5): 683−688. doi:  10.3321/j.issn:0253-9772.2004.05.023
[24] 魏高明. 苏皖4种同域分布栎树的遗传变异与基因渐渗[D]. 南京: 南京林业大学, 2015.

Wei G M. Genetic variation of populations and introgression among four sympatric oaks in Jiangsu and Anhui provinces[D]. Nanjing: Nanjing Forestry University, 2015.
[25] Zeng Y F, Liao W J, Petit R J, et al. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation[J]. Molecular Ecology, 2011, 20(23): 4995−5011. doi:  10.1111/j.1365-294X.2011.05354.x
[26] Hubert F, Grimm G W, Jousselin E, et al. Multiple nuclear genes stableilize the phylogenetic backbone of the genus Quercus[J]. Systematics & Biodiversity, 2014, 12(4): 405−423.
[27] 任宪威. 北京新植物[J]. 河北农业大学学报, 1996, 19(3):86−87.

Ren X W. New taxa from Beijing[J]. Journal of Agricultural University of Hebei, 1996, 19(3): 86−87.
[28] 陈焕镛, 黄成就.中国植物志(22): 壳斗科[M]. 北京: 科学出版社, 1998: 213−263.

Chen H Y, Huang C J. Flora of China (22): Fagaceae [M]. Beijing: Science Press, 1998: 213−263.
[29] Kampfer S, Lexer C, Steinkellner H, et al. Characterization of (GA)n microsatellite loci from Quercus robur[J]. Hereditas, 1998, 129: 183−186.
[30] Aldrich P R, Michler C H, Sun W L, et al. Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)[J]. Molecular Ecology Notes, 2002, 2: 472−474. doi:  10.1046/j.1471-8286.2002.00282.x
[31] Steinkellner H, Fluch S, Turetschek E, et al. Identification and characterization of (GA / CT)n-microsatellite loci from Quercus petraea[J]. Plant Molecular Biology, 1997, 33: 1093−1096. doi:  10.1023/A:1005736722794
[32] 王越. 基于SSR标记的槲树、蒙古-辽东栎种间杂交研究[D]. 济南: 山东大学, 2012.

Wang Y. Natural hybridization between Quercus dentata and Q. mongolica-liaotungensis revealed by microsatellite markers[D]. Jinan: Shandong University, 2012.
[33] Marshall T C, Slate J, Kruuk L E B, et al. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Molecular Ecology, 1998, 7(5): 639−655. doi:  10.1046/j.1365-294x.1998.00374.x
[34] Peakall R, Smouse P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537−2539. doi:  10.1093/bioinformatics/bts460
[35] 范英明, 张登荣, 于大德, 等. 河北省华北落叶松天然群体遗传多样性分析[J]. 植物遗传资源学报, 2014, 15(3):465−471.

Fan Y M, Zhang D R, Yu D D, et al. Genetic diversity and population structure of Larix principis-rupprechtii Mayr in Hebei Province[J]. Journal of Plant Genetic Resources, 2014, 15(3): 465−471.
[36] 张如华. 柽柳群体遗传变异研究[D]. 南京: 南京林业大学, 2011.

Zhang R H. Study on the gentic variation of Tamarix chinensis Lour. populations [D]. Nanjing: Nanjing Forestry University, 2011.
[37] 张学江. 中国卧龙自然保护区不同海拔川滇高山栎(Quercus aquifolioides)群体的遗传变异[D]. 成都: 中国科学院成都生物研究所2006.

Zhang X J. Genetic variation of Quercus aquifolioides populations at varying altitudes in the Wolong Nature Reserve of China[D]. Chengdu: Chengdu Institute of Biology, 2006.
[38] Hardy O J. Fine-scale genetic structure and gene dispersal in Centaurea corymbosa (Asteraceae) (Ⅱ): correlated paternity within and among sibships[J]. Genetics, 2004, 168(3): 1601−1614. doi:  10.1534/genetics.104.027714
[39] Craft K J, Ashley M V. Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois[J]. Forest Ecology and Management, 2007, 239(1): 13−20.
[40] 邸晓瑶. 基于cpDNA和SSR标记的槲栎群体遗传学研究[D]. 西安: 西北大学, 2017.

Di X Y. Population genetics of Quercus aliena based on cpDNA and SSR marker[D]. Xi’an: Northwest University, 2017.
[41] Chybicki I J, Burczyk J. Seeing the forest through the trees: comprehensive inference on individual mating patterns in a mixed stand of Quercus robur and Q. petraea[J]. Annals of Botany, 2013, 112(3): 561−574. doi:  10.1093/aob/mct131
[42] 徐刚标.植物群体遗传学[M]. 北京: 科学出版社, 2009: 55−65.

Xu G B. Plant population genetics[M]. Beijing: Science Press, 2009: 55−65.
[43] Liu Y, Li Y, Song J, et al. Geometric morphometric analyses of leaf  shapes  in  two  sympatric  Chinese  oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae)[J/OL]. Annals of Forest Science, 2018, 75(4)[2019−08−21]. http://link.springer.com/article/10.1007/s13595-018-0770-2.
[44] 解新明, 云锦凤. 植物遗传多样性及其检测方法[J]. 中国草地, 2000, 22(6):52−60.

Xie X M, Yun J F. Genetic diversity and detective methods of plant[J]. Chinese Journal of Grassland, 2000, 22(6): 52−60.
[45] 鲜冬娅. 北京上方山植物多样性及保护研究[D]. 北京: 北京林业大学, 2008.

Xian D Y. Study on plant diversity and conservation in Shangfang Mountain, Beijing[D]. Beijing: Beijing Forestry University, 2008.
[46] Aldrich P R, Lavender-Bares J. Wild crop relatives: genomic and breeding resources[M]. Berlin: Springer Berlin Heidelberg, 2011.
[47] Burgarella C, Lorenzo Z, Jabbour-Zahab R, et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex)[J]. Heredity, 2009, 102(5): 442−452. doi:  10.1038/hdy.2009.8
[48] Curtu A L, Gailing O, Finkeldey R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community [J/OL]. BMC Evolutionary Biology, 2007, 7(1): 218 [2019−08−21].http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-7-218.
[49] Lyu J, Song J, Liu Y, et al. Species boundaries between three sympatric oak species: Quercus aliena, Q. dentata, and Q. variabilis at the northern edge of their distribution in China[J/OL]. Frontiers in Plant Science, 2018, 9: 414[2019−06−14]. http://www.frontiersin.org/articles/10.3389/fpls.2018.00414/full.