[1] Bargali K, Manral V, Padalia K, et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India[J]. Catena, 2018, 171: 125−135. doi:  10.1016/j.catena.2018.07.001
[2] 漆良华, 张旭东, 周金星, 等. 湘西北小流域不同植被恢复区土壤微生物数量、生物量碳氮及其分形特征[J]. 林业科学, 2009, 45(8):14−20. doi:  10.3321/j.issn:1001-7488.2009.08.003

Qi L H, Zhang X D, Zhou J X, et al. Soil microbe quantities, microbial carbon and nitrogen and fractal characteristics under different vegetation restoration patterns in watershed, Northwest Hunan[J]. Scientia Silvae Sinicae, 2009, 45(8): 14−20. doi:  10.3321/j.issn:1001-7488.2009.08.003
[3] Kononen M, Jauhianen J, Strakova P, et al. Deforested and drained tropical peat land sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest[J]. Soil Biology and Biochemistry, 2018, 123: 229−241.
[4] 刘爽, 王传宽. 五种温带森林土壤微生物生物量碳氮的时空格局[J]. 生态学报, 2010, 30(12):3135−3143.

Liu S, Wang C K. Spatio-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems[J]. Acta Ecologica Sinica, 2010, 30(12): 3135−3143.
[5] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 2019, 30(6):1901−1910.

Liu B, Wu W F, Lin S Z, et al. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four types mid-subtropical forests[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1901−1910.
[6] 陈平, 赵博, 杨璐, 等. 接种蚯蚓和添加凋落物对油松人工林土壤养分和微生物量及活性的影响[J]. 北京林业大学学报, 2018, 40(6):63−71.

Cheng P, Zhao B, Yang L, et al. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2018, 40(6): 63−71.
[7] 冯书珍, 苏以荣, 张伟, 等. 坡位与土层对喀斯特原生林土壤微生物生物量与丰度的影响[J]. 环境科学, 2015, 36(10):3832−3838.

Feng S Z, Su Y R, Zhang W, et al. Effects of slope position and soil horizon on soil microbial biomass and abundance in karst primary forest of southwest China[J]. Environmental Science, 2015, 36(10): 3832−3838.
[8] Gran R F. Nitrogen mineralization drives the response of forest productivity to soil warming: modeling in ecosys vs. measurements from the Harvard soil heating experiment[J]. Ecological Modelling, 2014, 288: 38−46. doi:  10.1016/j.ecolmodel.2014.05.015
[9] 李胜蓝, 方晰, 项文化, 等. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量[J]. 林业科学, 2014, 50(5):8−16.

Li S L, Feng X, Xiang W H, et al. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province, China[J]. Scientia Silvae Sinicae, 2014, 50(5): 8−16.
[10] Zhao F Z, Kang D, Han X H, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering, 2015, 74: 415−422. doi:  10.1016/j.ecoleng.2014.11.010
[11] 覃乾, 朱世硕, 夏彬, 等. 黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素[J]. 环境科学, 2019, 40(4):1973−1980.

Qin Q, Zhu S S, Xia B, et al. Temporal and spatial dynamics of soil microbial biomass carbon and its influencing factors on eroded slope in hilly Loess Plateau region[J]. Environmental Science, 2019, 40(4): 1973−1980.
[12] 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6):597−609. doi:  10.17521/cjpe.2017.0011

Wang X Q, Han Y, Wang C K. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan Region, Northeast China[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 597−609. doi:  10.17521/cjpe.2017.0011
[13] Sorensen P O, Finzi A C, Giasson M A, et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry, 2018, 116: 39−47. doi:  10.1016/j.soilbio.2017.09.026
[14] 刘平, 邱月, 王玉涛, 等. 渤海泥质海岸典型防护林土壤微生物量季节动态变化[J]. 生态学报, 2019, 39(1):1−8. doi:  10.1016/j.chnaes.2018.07.004

Liu P, Qiu Y, Wang Y T, et al. Seasonal dynamics of soil microbial biomass in typical shelterbelts on the Bohai muddy coast[J]. Acta Ecologica Sinica, 2019, 39(1): 1−8. doi:  10.1016/j.chnaes.2018.07.004
[15] Bölscher T, Paterson E, Freitag T, et al. Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition[J]. Soil Biology and Biochemistry, 2017, 109: 59−69. doi:  10.1016/j.soilbio.2017.02.005
[16] Xiong Q L, Pan K W, Zhang L, et al. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai -Tibet Plateau, southwestern China[J]. Applied Soil Ecology, 2016, 101: 72−83. doi:  10.1016/j.apsoil.2016.01.011
[17] 郑海峰, 陈亚梅, 杨林, 等. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 2017, 28(9):2840−2848.

Zheng H F, Chen Y M, Yang L, et al. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2840−2848.
[18] Soleimani A, Hosseini S M, Bavani A R M, et al. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran[J]. Catena, 2019, 177(2): 227−237.
[19] 李俊霞, 白学平, 张先亮, 等. 大兴安岭林区南、北部天然樟子松生长对气候变化的响应差异[J]. 生态学报, 2017, 37(21):7232−7241.

Li J X, Bai X P, Zhang X L, et al. Different responses of natural Pinus sylvestris var. mongolica growth to climate change in southern and northern forested areas in the Great Xing,an Mountains[J]. Acta Ecologica Sinica, 2017, 37(21): 7232−7241.
[20] 周志强, 郝雨, 刘彤, 等. 大兴安岭北段天然樟子松林遗传多样性与主要生态因子的相关性研究[J]. 北京林业大学学报, 2006, 28(6):22−27. doi:  10.3321/j.issn:1000-1522.2006.06.004

Zhou Z Q, Hao Y, Liu T, et al. Correlativity analysis between the main ecological factors and genetic diversity of Pinus sylvestris var. mongolica population in the north part of Great Xing, an Mountains[J]. Journal of Beijing Forestry University, 2006, 28(6): 22−27. doi:  10.3321/j.issn:1000-1522.2006.06.004
[21] 顾云春. 大兴安岭林区森林群落的演替[J]. 植物生态学与地植物学丛刊, 1985(1):64−70.

Gu Y C. Succession of forest community in Great Xing,an Mountains forest region[J]. Chinese Journal of Plant Ecology, 1985(1): 64−70.
[22] 李奕, 满秀玲, 蔡体久, 等. 大兴安岭山地樟子松天然林土壤水分物理性质及水源涵养功能研究[J]. 水土保持学报, 2011, 25(2):87−91, 96.

Li Y, Man X L, Cai T J, et al. Research on physical properties of soil moisture and water conservation of scotch pine forest in Da Xing,an Mountains[J]. Journal of Soil and Water Conservation, 2011, 25(2): 87−91, 96.
[23] 顾云春. 大兴安岭几个主要森林类型的天然更新[J]. 林业资源管理, 1980(4):21−27.

Gu Y C. Natural regeneration of several major forest types in Great Xing,an Mountains[J]. Forest Resources Management, 1980(4): 21−27.
[24] Cheng G D, Jin H J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China[J]. Hydrogeology Journal, 2013, 21: 5−23. doi:  10.1007/s10040-012-0927-2
[25] Gao W F, Yao Y L, Liang H, et al. Emissions of nitrous oxide from continuous permafrost region in the Daxing,an Mountains, Northeast China[J]. Atmospheric Environment, 2019, 198: 34−45. doi:  10.1016/j.atmosenv.2018.10.045
[26] 晏寒冰, 彭丽潭, 唐旭清. 基于气候变化的东北地区森林树种分布预测建模与影响分析[J]. 林业科学, 2014, 50(5):132−139.

Yan H B, Peng LT, Tang X Q. Modeling and impact analysis on distribution prediction of forest tree species in northeast China based on climate change[J]. Scientia Silvae Sinicae, 2014, 50(5): 132−139.
[27] 李奕, 满秀玲, 蔡体久, 等. 大兴安岭山地樟子松天然林不同坡位土壤养分特征及相关性研究[J]. 安徽农业科学, 2014, 42(5):1413−1416, 1420. doi:  10.3969/j.issn.0517-6611.2014.05.052

Li Y, Man X L, Cai T J, et al. Research on soil nutrient characteristic and correlation in different slope position of scotch pine forest in Da Hinggan Mountains[J]. Journal of Anhui Agri, 2014, 42(5): 1413−1416, 1420. doi:  10.3969/j.issn.0517-6611.2014.05.052
[28] 田舒怡, 满秀玲. 大兴安岭北部森林土壤微生物量碳和水溶性有机碳特征研究[J]. 土壤通报, 2016, 47(4):838−845.

Tian S Y, Man X L. Study on characteristics of soil microbial biomass carbon and dissolved organic carbon in northern forest region of Daxing,an Mountains[J]. Chinese Journal of Soil Science, 2016, 47(4): 838−845.
[29] 肖瑞晗, 满秀玲, 丁令智. 大兴安岭北部天然针叶林土壤氮矿化特征研究[J]. 生态学报, 2019, 39(8):2762−2771.

Xiao R H, Man X L, Ding L Z. Study on the characteristics of soil nitrogen mineralization of the natural coniferous forest on northern of Daxing ’an Mountains, Northeast China[J]. Acta Ecologica Sinica, 2019, 39(8): 2762−2771.
[30] 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1):150−158.

Wang N, Yang X, Li S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Scientia Silvae Sinica, 2016, 52(1): 150−158.
[31] Liu W X, Qiao C L, Yang S, et al. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition[J]. Geoderma, 2018, 332: 37−44. doi:  10.1016/j.geoderma.2018.07.008
[32] 田舒怡. 大兴安岭北部主要森林类型土壤活性碳特征[D]. 哈尔滨: 东北林业大学, 2016.

Tian S Y. Study on characteristics of soil labile organic carbon in main forest types in the north of Daxing’anling Maintains[D]. Harbin: Northeast Forestry University, 2016
[33] 石宪, 张秋良, 曹阳, 等. 兴安落叶松天然林不同林型土壤养分分布特征研究[J]. 内蒙古林业科技, 2015, 41(3):6−10. doi:  10.3969/j.issn.1007-4066.2015.03.002

Shi X, Zhang Q L, Cao Y, et al. Study on distribution feature of soil nutrient in natural forest of Larix gmelinii with different forest types[J]. Journal of Inner Mongolia Forestry Science and Technology, 2015, 41(3): 6−10. doi:  10.3969/j.issn.1007-4066.2015.03.002
[34] 曲杭峰, 董希斌, 唐国华, 等. 补植改造对大兴安岭白桦低质林土壤养分的影响[J]. 东北林业大学学报, 2017, 45(4):75−80. doi:  10.3969/j.issn.1000-5382.2017.04.015

Qu H F, Dong X B, Tang G H, et al. Effects of replanting alterations of Betula platyphylla low-quality forest on soil nutrients in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2017, 45(4): 75−80. doi:  10.3969/j.issn.1000-5382.2017.04.015
[35] 沈丹, 王磊. 青藏高原土壤湿度对中国夏季降水与气温影响的敏感试验[J]. 气象科技, 2015, 43(6):1095−1103, 1120. doi:  10.3969/j.issn.1671-6345.2015.06.014

Shen D, Wang L. Sensitivity test of soil moisture on summer precipitation and temperature in China on Qinghai-Tibet plateau[J]. Weather Technology, 2015, 43(6): 1095−1103, 1120. doi:  10.3969/j.issn.1671-6345.2015.06.014
[36] Ren C J, Chen J, Lu X J, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 2018, 116: 4−10.
[37] 刘纯, 刘延坤, 金光泽. 小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2):451−459.

Liu C, Liu Y K, Jin G Z. Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing,an Mountains, China[J]. Acta Ecologica Sinica, 2014, 34(2): 451−459.
[38] 曹艳峰, 李彦, 李晨华, 等. 荒漠灌木梭梭(Haloxylon ammodendron)周围土壤微生物的空间分布[J]. 生态学报, 2016, 36(6):1628−1635.

Cao Y F, Li Y, Li C H, et al. The spatial distribution of soil microbes around a desert shrub of Haloxylon ammodendron[J]. Acta Ecologica Sinica, 2016, 36(6): 1628−1635.
[39] 王国兵, 郝岩松, 王兵, 等. 土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J]. 北京林业大学学报, 2006(增刊2):73−79.

Wang G B, Hao Y S, Wang B, et al. Influence of land-use change on soil respiration and soil microbial biomass[J]. Journal of Beijing Forestry University, 2006(Suppl.2): 73−79.
[40] Cusack D F, Mccleerytl L. Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests[J]. Forest Ecology and Management, 2014, 318: 34−43. doi:  10.1016/j.foreco.2013.12.036
[41] Zhang W, Zhao J, Pan F J, et al. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China[J]. Plant and Soil, 2015, 391: 77−91. doi:  10.1007/s11104-015-2406-8
[42] 孙双红, 陈立新, 李少博, 等. 阔叶红松林不同演替阶段土壤酶活性与养分特征及其相关性[J]. 北京林业大学学报, 2016, 38(2):20−28.

Sun S H, Chen L X, Li S B, et al. Characteristics of soil enzyme activity and nutrient content and their correlations at different succession stages of broadleaf-Korean pine forest[J]. Journal of Beijing Forestry University, 2016, 38(2): 20−28.
[43] Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur,Northeast India[J]. Applied Soil Ecology, 2006, 31: 220−227. doi:  10.1016/j.apsoil.2005.05.005
[44] 付战勇, 孙景宽, 李传荣, 等. 黄河三角洲贝壳堤土壤微生物生物量对不同生境因子的响应[J]. 生态学报, 2018, 38(18):6594−6602.

Fu Z Y, Sun J K, Li C R, et al. Responses of soil microbial biomass to different habitat factors in the chenier of the Yellow River Delta[J]. Acta Ecologica Sinica, 2018, 38(18): 6594−6602.
[45] Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 2003, 35(3): 453−461. doi:  10.1016/S0038-0717(02)00297-3
[46] Ruan H H, Zou X M, Scatena F N, et al. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J]. Plant and Soil, 2004, 260: 147−154. doi:  10.1023/B:PLSO.0000030177.20951.94
[47] Sugihara S, Funakawa S, Kilasara M, et al. Effect of land management and soil texture on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania[J]. Applied Soil Ecology, 2010, 44: 80−88. doi:  10.1016/j.apsoil.2009.10.003
[48] 吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征[J]. 应用生态学报, 2013, 24(8):2301−2309.

Wu Z Y, Lin W X, Chen Z F, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2301−2309.
[49] Li J W, Wang G S, Mayes M A, et al. Reduced carbon use efficiency and increased microbial turnover with soil warming[J]. Global Change Biology, 2019, 25(3): 900−910.
[50] 王风芹, 田丽青, 宋安东, 等. 华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态[J]. 林业科学, 2015, 51(3):16−24.

Wang F Q, Tian L Q, Song A D, et al. Seasonal dynamics of microbial biomass carbon and nitrogen in soil of Robinia pseudoacacia forests and near-naturally restored vegetation in Northern China[J]. Scientia Silvae Sinicae, 2015, 51(3): 16−24.
[51] Zhong Z, Makeschin F. Differences of soil microbial biomass and nitrogen transformation under two forest types in central Germany[J]. Plant and Soil, 2006, 283: 287−297. doi:  10.1007/s11104-006-0018-z
[52] 朱瑞. 马啣山多年冻土地面变形研究[D]. 兰州: 兰州交通大学, 2017.

Zhu R.Study on ground deformation of permafrost in Ma Xian Mountain[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[53] 胡宏昌, 王根绪, 王一博, 等. 江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J]. 科学通报, 2009(2):242−250.

Hu H C, Wang G C, Wang Y B, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009(2): 242−250.