[1] 王昌腾. 基于应用型人才培养提高学生树木识别教改探索[J]. 现代园艺, 2018(13):165−166.Wang C T. Exploration on the teaching reform of improving students'tree recognition based on the cultivation of applied talents[J]. Modern Horticulture, 2018(13): 165−166.
[2] Richter R, Reu B, Wirth C, et al. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 464−474. doi: 10.1016/j.jag.2016.07.018
[3] Pham L T H, Brabyn L, Ashraf S. Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree species in a complex landscape using an object-based classification approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50: 187−197. doi: 10.1016/j.jag.2016.03.015
[4] 陈明健, 陈志泊, 杨猛, 等. 叶片传统特征和距离矩阵与角点矩阵相结合的树种识别算法[J]. 北京林业大学学报, 2017, 39(2):108−116.Chen M J, Chen Z B, Yang M, et al. A tree species identification algorithm combining traditional leaf characteristics and distance matrix with corner matrix[J]. Journal of Beijing Forestry University, 2017, 39(2): 108−116.
[5] 李可心, 戚大伟, 牟洪波, 等. 基于灰度共生矩阵与SOM神经网络的树皮纹理特征识别[J]. 森林工程, 2017, 33(3):24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006Li K X, Qi D W, Mou H B, et al. Bark texture recognition based on gray level co-occurrence matrix and SOM neural network[J]. Forest Engineering, 2017, 33(3): 24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006
[6] 杨洋. 基于小波变换及SVM理论的树木种类识别研究[D]. 哈尔滨: 东北林业大学, 2017.Yang Y. Research on tree species recognition based on wavelet transform and SVM theory[D]. Harbin: Northeast Forestry University, 2017.
[7] 于海鹏, 刘一星, 刘镇波. 基于图像纹理特征的木材树种识别[J]. 林业科学, 2007,43(4):77−81,146−147. doi: 10.3321/j.issn:1001-7488.2007.04.013Yu H P, Liu Y X, Liu Z B. Wood species identification based on image texture features[J]. Forestry Science, 2007,43(4): 77−81,146−147. doi: 10.3321/j.issn:1001-7488.2007.04.013
[8] 孙伶君, 汪杭军, 祁亨年. 基于分块LBP的树种识别研究[J]. 北京林业大学学报, 2011, 33(4):107−112.Sun L J, Wang H J, Qi H N. Study on tree species identification based on block LBP[J]. Journal of Beijing Forestry University, 2011, 33(4): 107−112.
[9] Bertrand S, Ameur R B, Cerutti G, et al. Bark and leaf fusion systems to improve automatic tree species recognition[J]. Ecological Informatics, 2018, 46: 57−73. doi: 10.1016/j.ecoinf.2018.05.007
[10] Zhao Z Q, Ma L H, Cheung Y, et al. ApLeaf: an efficient android-based plant leaf identification system[J]. Neurocomputing, 2015, 151: 1112−1119. doi: 10.1016/j.neucom.2014.02.077
[11] 赵鹏超, 戚大伟. 基于卷积神经网络和树叶纹理的树种识别研究[J]. 森林工程, 2018, 34(1):56−59. doi: 10.3969/j.issn.1006-8023.2018.01.013Zhao P C, Qi D W. Study on tree species identification based on convolution neural network and leaf texture[J]. Forest Engineering, 2018, 34(1): 56−59. doi: 10.3969/j.issn.1006-8023.2018.01.013
[12] Li Q, You X, Li K, et al. Deep hierarchical feature extraction algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 127−136.
[13] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
[14] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge: Massachusetts Institute of Technology Press, 2012: 1106−1114.
[15] Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington D C: IEEE Computer Society, 2009: 248−255.
[16] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C/OL]. arXiv, 2014[2018−05−06]. https://arxiv.org/pdf/1409.1556.pdf.
[17] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D C: IEEE Computer Society Press, 2015: 1−9.
[18] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, Vegas: IEEE, 2016: 770−778.
[19] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508−2515, 2565. doi: 10.11772/j.issn.1001-9081.2016.09.2508Li Y D, Hao Z B, Lei H. A review of convolutional neural networks[J]. Computer applications, 2016, 36(9): 2508−2515, 2565. doi: 10.11772/j.issn.1001-9081.2016.09.2508
[20] Zeiler M D, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks[C/OL]. arXiv, 2013 [2018−04−16]. https://arxiv.org/pdf/1301.3557.pdf.
[21] Nair V, Hinton G E, Farabet C. Rectified linear units improve restricted Boltzmannmachines[C]//Processing of the 27th International Conference on Machine Learning. Haifa: International Machine Learning Society (IMLS), 2010: 807−714.
[22] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229−1251. doi: 10.11897/SP.J.1016.2017.01229Zhou F Y, Jin L P, Dong J. Summary of convolution neural network research[J]. Acta Computer Science, 2017, 40(6): 1229−1251. doi: 10.11897/SP.J.1016.2017.01229
[23] 刘涛, 周先春, 严锡君. 多通道多模式融合LBP特征的纹理相似度计算[J]. 计算机应用研究, 2018, 35(12):3803−3806. doi: 10.3969/j.issn.1001-3695.2018.12.063Liu T, Zhou X C, Yan X J. Computation of texture similarity based on multi-channel and multi-mode LBP features[J]. Computer Applications, 2018, 35(12): 3803−3806. doi: 10.3969/j.issn.1001-3695.2018.12.063
[24] 尚俊. 基于HOG特征的目标识别算法研究[D]. 武汉: 华中科技大学, 2012.Shang J. Target recognition algorithm based on HOG features[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[25] 张盼. 基于混淆矩阵的分类器选择集成方法研究[D]. 焦作: 河南理工大学, 2016.Zhang P. Ensemble method of classifier selection based on confusion matrix[D]. Jiaozuo: Henan Polytechnic University, 2016.