[1] 胡海清, 罗斯生, 罗碧珍, 等.森林可燃物含水率及其预测模型研究进展[J].世界林业研究, 2017, 30(3): 64-69. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201703012

Hu H Q, Luo S S, Luo B Z, et al. Forest fuel moisture content and its prediction model[J]. World Forest Research, 2017, 30(3): 64-69. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201703012
[2] 吴德慧, 江洪, 徐建辉.森林可燃物的遥感分类研究进展[J].安徽农业科学, 2012, 40(26): 12961-12962. doi:  10.3969/j.issn.0517-6611.2012.26.088

Wu D H, Jiang H, Xu J H. Advance in the remote sensing classification of forest fuel[J]. Journal of Anhui Agricultural Sciences, 2012, 40(26): 12961-12962. doi:  10.3969/j.issn.0517-6611.2012.26.088
[3] Jarron L R, Hermosilla T, Coops N C, et al. Differentiation of alternate harvesting practices using annual time series of landsat data[J]. Forests, 2017, 8(1):13. https://www.mdpi.com/1999-4907/8/1/15
[4] 郭鸿郡, 俞童, 马超, 等.基于遥感技术的森林可燃物类型划分[J].林业科技情报, 2014, 46(2): 1-3. doi:  10.3969/j.issn.1009-3303.2014.02.001

Guo H J, Yu T, Ma C, et al. The division for the forest combustible type based on the remote sensing technology[J]. Forestry Science and Technology Information, 2014, 46(2): 1-3. doi:  10.3969/j.issn.1009-3303.2014.02.001
[5] 赵俊卉, 郭广猛, 张慧东, 等.用MODIS数据预估森林可燃物湿度的研究[J].北京林业大学学报, 2006, 28(6):148-150. doi:  10.3321/j.issn:1000-1522.2006.06.027

Zhao J B, Guo G M, Zhang H D, et al. Estimating fuel moisture content of forests with MODIS data[J].Journal of Beijing Forestry University, 2006, 28(6):148-150. doi:  10.3321/j.issn:1000-1522.2006.06.027
[6] 张莹, 张晓丽, 李宏志, 等.基于频谱和光谱特征的高光谱地物分类比较[J].北京林业大学学报, 2018, 40(7):1-8. doi:  10.13332/j.1000-1522.20170342

Zhang Y, Zhang X L, Li H Z, et al. A comparative analysis on hyperspectral land-cover classification based on frequency spectrum and spectral characteristics[J].Journal of Beijing Forestry University, 2018, 40(7):1-8. doi:  10.13332/j.1000-1522.20170342
[7] 朱江, 胡华全, 范雯琦, 等.基于深度神经网络的高光谱遥感影像分类方法研究[J].装备学院学报, 2017, 28(3): 14-20. doi:  10.3783/j.issn.2095-3828.2017.03.003

Zhu J, Hu H Q, Fan W Q, et al. Research on hyperspectral remote sensing image classification based on deep neural networks[J]. Journal of Equipment Academy, 2017, 28(3): 14-20. doi:  10.3783/j.issn.2095-3828.2017.03.003
[8] Pal M, Mather P M. Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing, 2005, 26(5): 1007-1011. doi:  10.1080/01431160512331314083
[9] 李大威, 杨风暴, 王肖霞, 等.基于随机森林与D-S证据合成的多源遥感分类研究[J].激光与光电子学进展, 2016(3): 75-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201603010

Li D W, Yang F B, Wang X X, et al. Multisource remote sensing classification based on random forestand adaptive weighted D-S evidence synthesis[J]. Laser & Optoelectronics Progress, 2016(3): 75-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201603010
[10] 侍昊, 李旭文, 牛志春, 等.基于随机森林模型的太湖水生植被遥感信息提取[J].湖泊科学, 2016(3): 635-644. http://d.old.wanfangdata.com.cn/Periodical/hpkx201603020

Shi H, Li X W, Niu Z C, et al. Remote sensing information extraction of aquatic vegetation in Lake Taihu based on random forest model[J]. Journal of Lake Sciences, 2016(3): 635-644. http://d.old.wanfangdata.com.cn/Periodical/hpkx201603020
[11] Otukei J R, Blaschke T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 121: 27-31. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216787839/
[12] 杨长坤, 王崇倡, 张鼎凯, 等.基于SVM的高分一号号卫星影像分类[J].测绘与空间地理信息, 2015(9): 142-144. doi:  10.3969/j.issn.1672-5867.2015.09.049

Yang C K, Wang C C, Zhang D K, et al. Classification of GF-1 satellite image based on SVM[J]. Geomatics & Spatial Information Technology, 2015(9): 142-144. doi:  10.3969/j.issn.1672-5867.2015.09.049
[13] 刘毅, 杜培军, 郑辉, 等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学, 2012, 37(4): 194-196. http://d.old.wanfangdata.com.cn/Periodical/chkx201204063

Liu Y, Du P J, Zheng H, et al. Classification of China small satellite remote sensing image based on random forests[J]. Science of Surveying and Mapping, 2012, 37(4): 194-196. http://d.old.wanfangdata.com.cn/Periodical/chkx201204063
[14] 王凯, 牛树奎.基于Rothermel模型的北京鹫峰国家森林公园潜在火行为[J].浙江农林大学学报, 2016, 33(1): 42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006

Wang K, Niu S K. Research on the potential fire behavior in Jiufeng National Forest Park of Beijing based on the Rothermel model[J]. Journal of Zhejiang A & F University, 2016, 33(1): 42-50. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201601006
[15] 林海晏, 岳彩荣, 吴晓晖, 等.基于EnMAP-Box的遥感图像分类研究[J].西南林业大学学报(自然科学), 2014, 34(2): 67-71. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201402013

Lin H Y, Yue C R, Wu X J, er al. Remote sensing image classification by EnMAP-Box model[J]. Journal of Southwest Forestry University(Natural Sciences), 2014, 34(2): 67-71. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201402013
[16] 米锋, 黄莉莉, 孙丰军, 等.北京鹫峰国家森林公园生态安全评价[J].林业科学, 2010, 46(11): 52-58. doi:  10.11707/j.1001-7488.20101107

Mi F, Huang L L, Sun F J, et al. Evaluation of ecological security for the Jiufeng National Forest Park in Beijing[J]. Scientia Silvae Sinicae, 2010, 46(11): 52-58. doi:  10.11707/j.1001-7488.20101107
[17] 杨闫君, 占玉林, 田庆久, 等.基于GF-1/WFV NDVI时间序列数据的作物分类[J].农业工程学报, 2015, 31(24): 155-161. doi:  10.11975/j.issn.1002-6819.2015.24.024

Yang Y J, Zhan Y L, Tian Q J, et al. Crop classification based on GF-1/WFV NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 155-161. doi:  10.11975/j.issn.1002-6819.2015.24.024
[18] Breiman L. Random forests[J]. Machine Leaning, 2001, 45:5-32. doi:  10.1023/A%3A1010933404324
[19] Tian F, Yang L, Lü F, et al. Predicting liquid chromatographic retention times of peptides from the Drosophila melanogaster proteome by machine learning approaches[J]. Analytica Chimica Acta, 2009, 644(1-2): 10-16. doi:  10.1016/j.aca.2009.04.010
[20] Waske B, Van Der Linden S, Oldenburg C, et al. image RF: a user-oriented implementation for remote sensing image analysis with random forests[J]. Environmental ModellinG & Software, 2012, 35: 192-193.
[21] Kuemmerle R, Steder B, Dornhege C, et al. On measuring the accuracy of SLAM algorithms[J]. Autonomous Robots, 2009, 27(4): 387-407. doi:  10.1007/s10514-009-9155-6
[22] Manandhar R, Odeh I O A, Ancev T. Improving the accuracy of land use and land cover classification of landsat data using post-classification enhancement[J]. Remote Sensing, 2009, 1(3): 330-344. doi:  10.3390/rs1030330
[23] Yuan F, Sawaya K E, Loeffelholz B C, et al. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal landsat remote sensing[J]. Remote Sensing of Environment, 2005, 98(2-3): 317-328. doi:  10.1016/j.rse.2005.08.006
[24] Petropoulos G P, Vadrevu K P, Xanthopoulos G, et al. A comparison of spectral angle mapper and artificial neural network classifiers combined with landsat TM imagery analysis for obtaining Burnt Area Mapping[J]. Sensors, 2010, 10(3): 1967-1985. doi:  10.3390/s100301967
[25] Keshtkar H, Voigt W, Alizadeh E. Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery[J]. Arabian Journal of Geosciences, 2017, 10(6): 154-169. doi:  10.1007/s12517-017-2899-y
[26] 张浪, 朱义, 薛建辉, 等.转型期园林绿化的城市困难立地类型划分研究[J].现代城市研究, 2017(9): 114-118. doi:  10.3969/j.issn.1009-6000.2017.09.016

Zhang L, Zhu Y, Xue J H, et al. Classification study of challenging urban sites in landscape gardening during urban transition period[J]. Modern Urban Research, 2017(9): 114-118. doi:  10.3969/j.issn.1009-6000.2017.09.016