[1] Rovira J, Roig N, Nadal M, et al. Human health risks of formaldehyde indoor levels: an issue of concern[J]. Journal of Environmental Science and Health, Part A, 2016, 51(4): 357−363. doi:  10.1080/10934529.2015.1109411
[2] 刘路路, 范凤英, 郭鑫鑫. 关于地质聚合物的综述[J]. 四川水泥, 2019(4):311. doi:  10.3969/j.issn.1007-6344.2019.04.292

Liu L L, Fan F Y, Guo X X. A review of geopolymers[J]. Sichun Cement, 2019(4): 311. doi:  10.3969/j.issn.1007-6344.2019.04.292
[3] 王义超, 余江滔, 魏琳卓, 等. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16):2665−2670. doi:  10.11896/cldb.18070111

Wang Y C, Yu J T, Wei L Z, et al. Water-resistance property of ultra-high toughness magnesium oxychloride cement-based composites[J]. Materials Reports, 2019, 33(16): 2665−2670. doi:  10.11896/cldb.18070111
[4] 蔡少敏. 磷酸镁水泥在土木工程中的应用[J]. 广东建材, 2019, 35(7):23−26. doi:  10.3969/j.issn.1009-4806.2019.07.009

Cai S M. Application of magnesium phosphate cement in civil engineering[J]. Guangdong Building Materials, 2019, 35(7): 23−26. doi:  10.3969/j.issn.1009-4806.2019.07.009
[5] 李树霖. 地质聚合物无机胶黏剂的应用研究[D]. 长沙: 长沙理工大学, 2015.

Li S L. The application and research of inorganic geopolymer adhesive[D]. Changsha: Changsha University of Science & Technology, 2015.
[6] Ye H Z, Zhang Y, Yu Z M. Wood flour’s effect on the properties of geopolymer-based composites at different curing times[J]. Bioresource Technology, 2018, 13(2): 2499−2514.
[7] Ali S, Johannes W, Joachim H. Geopolymers as potential new binder class for the wood based composite industry[J]. Holzforschung, 2016, 70(8): 755−761. doi:  10.1515/hf-2015-0206
[8] Ali S, Johannes W, Joachim H. Effect of aluminosilicate powders on the applicability of innovative geopolymer binders for wood-based composites[J]. European Journal of Wood and Wood Products, 2017, 75(6): 893−902. doi:  10.1007/s00107-017-1172-0
[9] 朱海洋. 钢纤维粉煤灰地质聚合物混凝土的力学性能研究[D]. 阜新: 辽宁工程技术大学, 2017.

Zhu H Y. Study on basic properties of steel fiber fly ash geopolymer concrete[D]. Fuxin: Liaoning Project Technology University, 2017.
[10] Yan S, He P G, Jia D C, et al. Effect of fiber content on the microstructure and mechanical properties of carbon fiber felt reinforced geopolymer composites[J]. Ceramics International, 2016, 42(6): 7837−7843. doi:  10.1016/j.ceramint.2016.01.197
[11] 刘贵起, 徐洪钟, 孙义杰, 等. 纤维增韧地质聚合物改良膨胀土力学特性试验[J]. 南京工业大学学报(自然科学版), 2019, 41(4):456−462.

Liu G Q, Xu H Z, Sun Y J, et al. Experiments on mechanical properties of fiber reinforced geopolymer for expansive soil improvement[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(4): 456−462.
[12] 赵启迪, 薛平, 贾明印, 等. 水溶性树脂改性地质聚合物材料的性能研究[J]. 硅酸盐学报, 2018, 37(10):3141−3146.

Zhao Q D, Xue P, Jia M Y, et al. Study on the properties of the water-soluble organic modified geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3141−3146.
[13] 阚鑫禹, 薛平, 贾明印, 等. 聚乙烯醇改性地质聚合物复合材料的性能研究[J]. 矿产综合利用, 2018(3):125−128. doi:  10.3969/j.issn.1000-6532.2018.03.026

Kan X Y, Xue P, Jia M Y, et al. Study on properties of polyvinyl alcohol modified geopolymer composites[J]. Multipurpose Utilization of Mineral Resources, 2018(3): 125−128. doi:  10.3969/j.issn.1000-6532.2018.03.026
[14] Farizkha A, Nur A, Nurfadill, et al. Development of coconut trunk fiber geopolymer hybrid composite for structural engineering materials[J]. IOP Conference Series: Materials Science and Engineering, 2017, 180(1): 120−126.
[15] 李相国, 段超群, 马保国, 等. 聚合物对偏高岭土地聚物的改性研究[J]. 混凝土, 2013(12):103−106. doi:  10.3969/j.issn.1002-3550.2013.12.028

Li X G, Duan C Q, Ma B G, et al. Research on polymer-modified metakaolin-based geopolymer material[J]. Concrete, 2013(12): 103−106. doi:  10.3969/j.issn.1002-3550.2013.12.028
[16] 王亚超. 碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D]. 西安: 西安建筑科技大学, 2014.

Wang Y C. Investigations on reinforcing, toughening and durability of alkali-acticated fly ash-based geopolymer[D]. Xi’an: Xi’an University of Architecture and Technology, 2014.
[17] 王亚超. 有机树脂增韧碱激发粉煤灰基地质聚合物复合材料的性能研究[D]. 西安: 西安建筑科技大学, 2011.

Wang Y C. Study on performance of alkali-acticated flyash-based geopolymer reinforced by organic resin[D]. Xi’an: Xi’an University of Architecture and Technology, 2011.
[18] Shi C J, Jiménez A F, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750−763. doi:  10.1016/j.cemconres.2011.03.016
[19] 东艳君. 聚合物水泥砂浆力学性能及微观结构表征研究[J]. 科技视界, 2017(3):172−173. doi:  10.3969/j.issn.2095-2457.2017.03.137

Dong Y J. Study on mechanical properties and microstructure characterization of polymer cement mortar[J]. Science & Technology Vision, 2017(3): 172−173. doi:  10.3969/j.issn.2095-2457.2017.03.137
[20] 张浩, 高屹, 黄长虹, 等. 纤维对聚合物砂浆力学强度和柔韧性影响[J]. 低温建筑技术, 2020, 42(1):8−10.

Zhang H, Gao Y, Huang C H, et al. Effect of polymer and fiber on mechanical properties and flexibility of mortar[J]. Low Temperature Architecture Technology, 2020, 42(1): 8−10.
[21] 国家林业局. 结构用集成材: GB/T 26899−2011[S]. 北京: 中国标准出版社, 2011.

State Forestry Bureau. Structural glued laminated timber: GB/T 26899−2011[S]. Beijing: Standards Press of China, 2011.
[22] 李传习, 李游, 高有为, 等. 纳米SiO2掺量对胶粘CFRP板−钢搭接界面黏结性能的影响[J/OL]. 复合材料学报, 2020, 1−18. [2020−06−26]. http://DOI:10.13801/j.cnki.fhclxb.20200319.001" target="_blank">10.13801/j.cnki.fhclxb.20200319.001">http://DOI:10.13801/j.cnki.fhclxb.20200319.001.

Li C X, Li Y, Gao Y W, et al. Effect of nano-SiO2 content on the interface performance of glued CFRP-steel specimen[J/OL]. Acta Materiae Compositae Sinica, 2020, 1−18. [2020−06−26]. http://DOI:10.13801/j.cnki.fhclxb.20200319.001" target="_blank">10.13801/j.cnki.fhclxb.20200319.001">http://DOI:10.13801/j.cnki.fhclxb.20200319.001.
[23] 田焜, 孔贇, 王月兰, 等. 硅烷偶联剂改性偏高岭土对混凝土抗渗性的影响[J]. 混凝土与水泥品, 2018(3):25−28.

Tian K, Kong Y, Wang Y L, et al. Influence of metakaolin modified by silence coupling agent on the permeability of concrete[J]. China Concrete and Cement Products, 2018(3): 25−28.
[24] 朱宝贵, 焦宝祥, 张长森, 等. 硅烷偶联剂对地聚合物力学性能及微观结构的影响[J]. 硅酸盐通报, 2018, 37(10):3066−3070.

Zhu B G, Jiao B X, Zhang C S, et al. Effect of silane coupling agent on mechanical properties and microstructure of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3066−3070.
[25] 李盾兴. 高强度偏高岭土基地质聚合物的制备及性能研究[D]. 太原: 太原理工大学, 2017.

Li D X. The study of preparation and properties of high-strength metakaolin-based geopolymer[D]. Taiyuan: Taiyuan University of Technology, 2017.
[26] 张娜, 莫宏兵. 过氧化氢和硅烷偶联剂联合处理对纤维桩与不同粘接系统的影响[J]. 医学理论与实践, 2019, 32(7):940−942.

Zhang N, Mo H B. Effects of hydrogen peroxide and silane coupling agents on fiber posts and different bonding systems[J]. Journal of Medical Theory and Practice, 2019, 32(7): 940−942.
[27] 李美玲, 庞瑶, 李南, 等. 硅烷偶联剂改性环氧树脂对透明椴木单板的界面增强作用[J]. 中国人造板, 2018, 25(8):22−25. doi:  10.3969/j.issn.1673-5064.2018.08.007

Li M L, Pang Y, Li N, et al. Interfacial compatibilization of silane coupling agent modified epoxy resin for transparent basswood[J]. China Wood-Based Panels, 2018, 25(8): 22−25. doi:  10.3969/j.issn.1673-5064.2018.08.007
[28] 彭光, 许金余, 任韦波. 硅烷偶联剂改性苯丙乳液水泥复合材料的力学性能及孔隙结构[J]. 硅酸盐通报, 2018, 37(10):3076−3081.

Peng G, Xu J Y, Ren W B. mechanical properties and pore structure of silane coupling agent modified styrene-acrylic emulsion cement composite material[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3076−3081.
[29] 唐建明, 李剑, 石磊. 改性聚丙烯纤维增强磷酸镁水泥砂浆的力学性能研究[J]. 重庆建筑, 2017, 16(2):41−44. doi:  10.3969/j.issn.1671-9107.2017.02.041

Tang J M, Li J, Shi L. Study on mechanical properties of modified polypropylene fibers reinforced magnesium phosphate cement mortar[J]. Chongqing Architecture, 2017, 16(2): 41−44. doi:  10.3969/j.issn.1671-9107.2017.02.041
[30] 潘帅军. 特殊润湿功能表面的理论、构筑与应用[D]. 长沙: 湖南大学, 2015.

Pan S J. Advanced functional surfaces with extreme wetting behaviors: modeling, fabrication and application[D]. Changsha: Hunan University, 2015.