[1] 罗云建. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8):129−134. doi:  10.3321/j.issn:1001-7488.2009.08.023

Luo Y J. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129−134. doi:  10.3321/j.issn:1001-7488.2009.08.023
[2] 雷相东, 张会儒, 牟惠生. 东北过伐林区蒙古栎林分相容性生物量模型研究[J]. 第四纪研究, 2010, 30(3):559−565. doi:  10.3969/j.issn.1001-7410.2010.03.14

Lei X D, Zhang H R, Mu H S. Compatible stand biomass models of Mongolia oak forests in over logged forest regions, Northeast China[J]. Quaternary Sciences, 2010, 30(3): 559−565. doi:  10.3969/j.issn.1001-7410.2010.03.14
[3] 程堂仁, 冯菁, 马钦彦, 等. 基于森林资源清查资料的林分生物量相容性线性模型[J]. 北京林业大学学报, 2007, 29(5):110−113. doi:  10.3321/j.issn:1000-1522.2007.05.022

Cheng T R, Feng J, Ma Q Y, et al. Linear models with compatibility of stand biomass based on the forest resource inventory data[J]. Journal of Beijing Forestry University, 2007, 29(5): 110−113. doi:  10.3321/j.issn:1000-1522.2007.05.022
[4] 董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9):2825−2834.

Dong L H, Li F R. Stand-level biomass estimation models for the tree layer of main forest types in East Daxing ’an Mountains, China.[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2825−2834.
[5] 欧光龙, 胥辉, 王俊峰, 等. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3):101−110.

Ou G L, Xu H, Wang J F, et al. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. Journal of Beijing Forestry University, 2015, 37(3): 101−110.
[6] 赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建[J]. 林业科学, 2018, 54(2):81−89.

Zhao J C, Li H K. Establishment of below-ground biomass equations for Chinese fir at tree and stand level[J]. Scientia Silvae Sinicae, 2018, 54(2): 81−89.
[7] Vahedi A A. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran[J]. Biomass and Bioenergy, 2016, 88: 66−76. doi:  10.1016/j.biombioe.2016.03.020
[8] Sileshi G W. A critical review of forest biomass estimation models, common mistakes and corrective measures[J]. Forest Ecology and Management, 2014, 329: 237−254. doi:  10.1016/j.foreco.2014.06.026
[9] 董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.

Dong L H. Developing individual and stand-level biomass equations in Northeast China forest area[D]. Harbin: Northeast Forest University, 2015.
[10] Nandy S, Singh R, Ghosh S, et al. Neural network-based modelling for forest biomass assessment[J]. Carbon Management, 2017, 8(4): 305−317. doi:  10.1080/17583004.2017.1357402
[11] Stas S M, Rutishauser E, Chave J, et al. Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: comparing locally developed versus existing allometric models[J]. Forest ecology and management, 2017, 389: 27−34. doi:  10.1016/j.foreco.2016.12.010
[12] Ercanlı İ, Günlü A, Şenyurt M, et al. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey[J]. Forest Ecosystems, 2018, 5(1): 29. doi:  10.1186/s40663-018-0149-8
[13] Özçelik R, Diamantopoulou M J, Eker M, et al. Artificial neural network models: an alternative approach for reliable aboveground Pine tree biomass prediction[J]. Forest Science, 2017, 63(3): 291−302.
[14] 王轶夫, 孙玉军, 郭孝玉. 基于BP神经网络的马尾松立木生物量模型研究[J]. 北京林业大学学报, 2013, 35(2):17−21.

Wang Y F, Sun Y J, Guo X Y. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. Journal of Beijing Forestry University, 2013, 35(2): 17−21.
[15] 解雅麟, 王海燕, 雷相东. 基于3-PG模型的长白落叶松人工林生长和生物量模拟[J]. 南京林业大学学报(自然科学版), 2018, 42(1):141−148.

Xie Y L, Wang H Y, Lei X D. Growth and biomass simulation of Larix olgensis plantations based on 3-PG model[J]. Journal of Nanjing Forestry University(Natural Science Edition), 2018, 42(1): 141−148.
[16] 国家林业与草原局. 立木生物量模型及碳计量参数落叶松[S]. 北京: 中国标准出版社, 2016.

National Forestry and Grassland Administration of the People ’s Republic of China. Tree biomass models and related parameters to carbon accounting for Larix[S]. Beijing: Standards Press of China, 2016.
[17] Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Cambridge: MIT Press, 2016.
[18] Uzun H, Yıldız Z, Goldfarb J L, et al. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis[J]. Bioresource Technology, 2017, 234: 122−130. doi:  10.1016/j.biortech.2017.03.015
[19] Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26−31.
[20] Xiao X, White E P, Hooten M B, et al. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws[J]. Ecology, 2011, 92(10): 1887−1894. doi:  10.1890/11-0538.1
[21] 符利勇, 雷渊才, 孙伟, 等. 不同林分起源的相容性生物量模型构建[J]. 生态学报, 2014, 34(6):1464−1470.

Fu L Y, Lei Y C, Sun W, el al. Development of compatible biomass models for trees from different stand origin[J]. Acta Ecologica Sinica, 2014, 34(6): 1464−1470.
[22] Özçelik R, Diamantopoulou M J, Brooks J R, et al. Estimating tree bole volume using artificial neural network models for four species in Turkey[J]. Journal of Environmental Management, 2010, 91(3): 742−753.