[1] 许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20(3):491−498.

Xu T, Wang H T, Wang Y P, et al. Correlation between soil nutrient availability and bacteria community succession in poplar plantations[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 491−498.
[2] 陈莉莎, 张金池, 陆茜, 等. 杨树多代连作对土壤养分特征和生物活性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(5):85−90.

Chen L S, Zhang J C, Lu Q, et al. Effects of continuous planting of poplars on soil biological activity and nutrients[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5): 85−90.
[3] 张鼎华, 叶章发, 李宝福, 等. 杉木、马尾松轮作对林地土壤肥力和林木生长的影响[J]. 林业科学, 2001, 37(5):10−15. doi:  10.3321/j.issn:1001-7488.2001.05.003

Zhang D H, Ye Z F, Li B F, et al. The effects of rotating plantation on the soil fertility of forest land and the growth of stand[J]. Scientia Silvae Sinicae, 2001, 37(5): 10−15. doi:  10.3321/j.issn:1001-7488.2001.05.003
[4] 阎德仁, 王晶莹, 杨茂仁, 等. 落叶松人工林土壤衰退趋势[J]. 生态学杂志, 1997, 16(2):63−67.

Yan D R, Wang J Y, Yang M R, et al. Tendency of soil degradation in the pure larch plantations[J]. Chinese Journal of Ecology, 1997, 16(2): 63−67.
[5] 王洪君, 宫芳, 郑宝仁, 等. 落叶松人工林的土壤理化性质[J]. 东北林业大学学报, 1997, 25(3):76−80.

Wang H J, Gong F, Zheng B R, et al. Physical and chemical properties of the soil for larch plantations[J]. Journal of Northeast Forestry University, 1997, 25(3): 76−80.
[6] 席苏桦, 张忠山, 于化春, 等. 落叶松二代更新对地力影响及林木生长的研究[J]. 东北林业大学学报, 1999, 27(5):15−19. doi:  10.3969/j.issn.1000-5382.1999.05.004

Xi S H, Zhang Z S, Yu H C, et al. Study on the effect of the second generation for larch plantations on the soil fertility and the growth of standing trees[J]. Journal of Northeast Forestry University, 1999, 27(5): 15−19. doi:  10.3969/j.issn.1000-5382.1999.05.004
[7] 郭雄飞. 生物炭对间作体系中刨花润楠生长及土壤养分年际变化的影响[J]. 生态学报, 2019, 39(13):1−11.

Guo X F. Effect of biochar on Machilus pauhoi growth and soil nutrient interannual variation in an intercropping system[J]. Acta Ecologica Sinica, 2019, 39(13): 1−11.
[8] 马云波, 许中旗, 张岩, 等. 冀北山区华北落叶松人工林对土壤化学性质的影响[J]. 水土保持学报, 2015, 29(4):165−170.

Ma Y B, Xu Z Q, Zhang Y, et al. Impact of larch plantation on soil chemical property in north mountain of Hebei[J]. Journal of Soil and Water Conservation, 2015, 29(4): 165−170.
[9] Ochoa-Hueso R, Collins S L, Delgado-Baquerizo M, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents[J]. Global Change Biology, 2018, 24(7): 2818−2827. doi:  10.1111/gcb.14113
[10] Zhu H, He X, Wang K, et al. Interactions of vegetation succession, soil bio-chemical properties and bacterial communities in a Karst ecosystem[J]. European Journal of Soil Biology, 2012, 51: 1−7.
[11] 盛炜彤, 杨承栋, 范少辉, 等. 杉木人工林的土壤性质变化[J]. 林业科学研究, 2003, 16(4):377−385. doi:  10.3321/j.issn:1001-1498.2003.04.001

Sheng W T, Yang C D, Fan S H, et al. Variation of soil properties of Chinese fir plantation[J]. Forest Research, 2003, 16(4): 377−385. doi:  10.3321/j.issn:1001-1498.2003.04.001
[12] 杨安娜, 陆云峰, 张俊红, 等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019, 55(1):119−127. doi:  10.11707/j.1001-7488.20190114

Yang A N, Lu Y F, Zhang J H, et al. Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations[J]. Scientia Silvae Sinicae, 2019, 55(1): 119−127. doi:  10.11707/j.1001-7488.20190114
[13] 牛红榜, 刘万学, 万方浩, 等. 紫茎泽兰入侵对土壤微生物群落和理化性质的影响[J]. 生态学报, 2007, 27(7):3051−3060. doi:  10.3321/j.issn:1000-0933.2007.07.047

Niu H B, Liu W X, Wan F H, et al. Invasive effects of Ageratina adenophora on soil bacterial community and physical and chemical properties[J]. Acta Ecologica Sinica, 2007, 27(7): 3051−3060. doi:  10.3321/j.issn:1000-0933.2007.07.047
[14] 杨立宾, 隋心, 朱道光, 等. 寒温带兴安落叶松林土壤细菌微生物量和群落组成研究[J]. 中南林业科技大学学报, 2018, 38(8):67−75.

Yang L B, Sui X, Zhu D G, et al. Study on soil bacterial biomass and community composition of Larix gmelinii in cold temperate zone[J]. Journal of Central South University of Forestry & Technology, 2018, 38(8): 67−75.
[15] 于洋, 王海燕, 丁国栋, 等. 华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系[J]. 东北林业大学学报, 2011, 39(3):76−80. doi:  10.3969/j.issn.1000-5382.2011.03.023

Yu Y, Wang H Y, Ding G D, et al. Quantitative characteristics of soil microbe and its relationship with soil properties in Larix principis-rupprechtii plantations[J]. Journal of Northeast Forestry University, 2011, 39(3): 76−80. doi:  10.3969/j.issn.1000-5382.2011.03.023
[16] Zhang Y M, Zhou G Y, Wu N, et al. Soil enzyme activity changes in different-aged spruce forests of the eastern Qinghai-Tibetan Plateau[J]. Pedosphere, 2004, 14(3): 305−312.
[17] 赵海燕, 徐福利, 王渭玲, 等. 秦岭地区华北落叶松人工林地土壤养分和酶活性变化[J]. 生态学报, 2015, 35(4):1086−1094.

Zhao H Y, Xu F L, Wang W L, et al. Soil nutrients and enzyme activities in Larix principis-rupprechtii plantations in the Qinling Mountains, China[J]. Acta Ecologica Sinica, 2015, 35(4): 1086−1094.
[18] 陈钦程, 徐福利, 王渭玲, 等. 秦岭北麓不同林龄华北落叶松土壤速效钾变化规律[J]. 植物营养与肥料学报, 2014, 20(5):1243−1249. doi:  10.11674/zwyf.2014.0521

Chen Q C, Xu F L, Wang W L, et al. Seasonal dynamics of available K in soil for different ages of Larix principis-rupprechtii in the northern foot of the Qinling[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1243−1249. doi:  10.11674/zwyf.2014.0521
[19] 张庆费, 由文辉, 宋永昌, 等. 浙江天童植物群落演替对土壤化学性质的影响[J]. 应用生态学报, 1999, 10(1):21−24.

Zhang Q F, You W H, Song Y C, et al. Effect of plant community succession on soil chemical properties in Tiantong, Zhejiang Province[J]. Chinese Journal of Applied Ecology, 1999, 10(1): 21−24.
[20] 杨菁, 周国英, 田媛媛, 等. 降香黄檀不同混交林土壤细菌多样性差异分析[J]. 生态学报, 2015, 35(24):8117−8127.

Yang J, Zhou G Y, Tian Y Y, et al. Differential analysis of soil bacteria diversity in different mixed forests of Dalbergia odorifera[J]. Acta Ecologica Sinica, 2015, 35(24): 8117−8127.
[21] Stefano F, Stefano A, Jakob P, et al. Bacterial communities associated with benthic organic matter in headwater stream microhabitats[J]. Environmental Microbiology, 2010, 7(10): 1633−1640.
[22] Kirchman D L. The ecology of Cytophaga-Flavobacteria in aquatic environments[J]. FEMS Microbiology Ecology, 2002, 39 (2): 91−100.
[23] Noah F, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354−1364. doi:  10.1890/05-1839
[24] Liu J, Sui Y, Yu Z, et al. Diversity and distribution patterns of Acidobacterial communities in the black soil zone of northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 212−222.
[25] Zhang C, Liu G, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology & Biochemistry, 2016, 97: 40−49.
[26] Noah F, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626−631. doi:  10.1073/pnas.0507535103
[27] Mohamed H, Miloud B, Zohra F, et al. Isolation and characterization of Actinobacteria from Algerian Sahara soils with antibacterial activities[J]. International Journal of Molecular and Cellular Medicine, 2017, 6(2): 109−120.
[28] 丁新景, 黄雅丽, 敬如岩, 等. 基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究[J]. 生态学报, 2018, 38(16):5857−5864.

Ding X J, Huang Y L, Jing R Y, et al. Bacterial structure and diversity of four plantations in the Yellow River Delta by high-throughput sequencing[J]. Acta Ecologica Sinica, 2018, 38(16): 5857−5864.
[29] 杨涛, 徐慧, 李慧, 等. 樟子松人工林土壤养分、微生物及酶活性的研究[J]. 水土保持学报, 2005, 19(3):50−53. doi:  10.3321/j.issn:1009-2242.2005.03.013

Yang T, Xu H, Li H, et al. Soil nutrient, microorganism and enzyme activity in Pinus sylvestris plantations[J]. Journal of Soil and Water Conservation, 2005, 19(3): 50−53. doi:  10.3321/j.issn:1009-2242.2005.03.013
[30] 毛瑢, 崔强, 赵琼, 等. 不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性[J]. 应用生态学报, 2009, 20(9):2079−2084.

Mao R, Cui Q, Zhao Q, et al. Soil bacterial biomass and activity in relation to stand age of poplar shelterbelts[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2079−2084.
[31] Zhou Z C, Shangguan Z P. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China[J]. Plant & Soil, 2007, 291(1/2): 119−129.
[32] 王光华, 金剑, 徐美娜, 等. 植物、土壤及土壤管理对土壤微生物群落结构的影响[J]. 生态学杂志, 2006, 25(5):550−556. doi:  10.3321/j.issn:1000-4890.2006.05.017

Wang G H, Jin J, Xu M N, et al. Effects of plant, soil and soil management on soil bacterial community diversity[J]. Chinese Journal of Ecology, 2006, 25(5): 550−556. doi:  10.3321/j.issn:1000-4890.2006.05.017
[33] 吴凤芝, 王学征. 设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系[J]. 中国农业科学, 2007, 40(10):2274−2280. doi:  10.3321/j.issn:0578-1752.2007.10.021

Wu F Z, Wang X Z. Effect of monocropping and rotation on soil bacterial community diversity and cucumber yield, quality under protected cultivation[J]. Scientia Agricultura Sinica, 2007, 40(10): 2274−2280. doi:  10.3321/j.issn:0578-1752.2007.10.021
[34] 孟会生, 洪坚平, 杨毅, 等. 配施磷细菌肥对复垦土壤细菌多样性及磷有效性的影响[J]. 应用生态学报, 2016, 27(9):3016−3022.

Meng H S, Hong J P, Yang Y, et al. Effect of applying phosphorus bacteria fertilizer on bacterial diversity and phosphorus availability in reclaimed soil[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 3016−3022.
[35] 李明, 马飞, 肖国举. 稻作条件下不同施肥模式对盐碱化土壤细菌和古菌群落结构的影响[J]. 农业环境科学学报, 2018, 37(3):495−504. doi:  10.11654/jaes.2017-1107

Li M, Ma F, Xiao G J. Effect of varying fertilization patterns on bacteria and Archaea communities in saline-alkali soil under rice cultivation[J]. Journal of Agro-Environment Science, 2018, 37(3): 495−504. doi:  10.11654/jaes.2017-1107
[36] 李晓莎, 李倩茹, 许中旗, 等. 冀北山地华北落叶松人工林与杨桦次生林的土壤养分差异[J]. 中南林业科技大学学报, 2017, 37(9):20−26.

Li X S, Li Q R, Xu Z Q, et al. Difference of Larix principis-rupprechtii plantations and secondary poplar-birch forests in soil nutrients in northern Yanshan Mountain[J]. Journal of Central South University of Forestry & Technology, 2017, 37(9): 20−26.
[37] 隋心, 张荣涛, 钟海秀, 等. 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究[J]. 土壤, 2015, 47(5):919−925.

Sui X, Zhang R T, Zhong H X, et al. Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain[J]. Soils, 2015, 47(5): 919−925.