[1] 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系[J]. 应用生态学报, 2018, 29(2):449−458.Yu H, Zhong Q L, Huang Y B, et al. Relationships between leaf functional traits of Machilus pauhoi understory seedlings from different provenances and geographical environmental factors[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 449−458.
[2] 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747−5758.Zhang H W, Ma J Y, Sun W, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747−5758.
[3] 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135−1153.Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135−1153.
[4] 王玉平, 陶建平, 刘晋仙, 等. 不同光环境下6种常绿阔叶林树种苗期的叶片功能性状[J]. 林业科学, 2012, 48(11):23−29. doi: 10.11707/j.1001-7488.20121104Wang Y P, Tao J P, Liu J X, et al. Response of leaf functional traits to different light regimes in an evergreen broad-leaved forest in the Jinyun Mountain[J]. Scientia Silvae Sinicae, 2012, 48(11): 23−29. doi: 10.11707/j.1001-7488.20121104
[5] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning[J]. Chinese Journal of Plant Ecology, 2007, 31(1): 150−165. doi: 10.3321/j.issn:1005-264X.2007.01.019
[6] 李颖, 姚婧, 杨松, 等. 东灵山主要树种在不同环境梯度下的叶功能性状研究[J]. 北京林业大学学报, 2014, 36(1):72−77.Li Y, Yao J, Yang S, et al. Leaf functional traits of main tree species at different environmental gradients in Dongling Mountain, Beijing[J]. Journal of Beijing Forestry University, 2014, 36(1): 72−77.
[7] Males J, Griffiths H. Functional types in the Bromeliaceae: relationships with drought-resistance traits and bioclimatic distributions[J]. Functional Ecology, 2017, 31: 1868−1880. doi: 10.1111/1365-2435.12900
[8] Sánchez-Gómez D, Zavala M A, Valladares F. Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species[J]. Annuals of Forest Science, 2008, 65(3): 311. doi: 10.1051/forest:2008004
[9] Donovan L A, Maherali H, Caruso C M, et al. The evolution of the worldwide leaf economics spectrum[J]. Trends in ecology & evolution (Personal edition), 2011, 26(2): 88−95.
[10] 冯秋红, 史作民, 董莉莉. 植物功能性状对环境的响应及其应用[J]. 林业科学, 2008, 44(4):125−131. doi: 10.3321/j.issn:1001-7488.2008.04.023Feng Q H, Shi Z M, Dong L L. Response of plant functional traits to environment and its application[J]. Scientia Silvae Sinicae, 2008, 44(4): 125−131. doi: 10.3321/j.issn:1001-7488.2008.04.023
[11] 陈书文, 李娟娟, 雷新彦, 等. 观赏植物黄栌快繁技术研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(9):117−120.Chen S W, Li J J, Lei X Y, et al. Study on rapid propagateion technic for ornamental of Cotinus coggygria[J]. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(9): 117−120.
[12] 孙鹏, 李金航, 刘海轩, 等. 黄栌根系结构与个体健康程度的关系[J]. 西北林学院学报, 2016, 31(2):20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04Sun P, Li J H, Liu H X, et al. Relationship between root structure and health level of Cotinus coggygria trees[J]. Journal of Northwest Forestry University, 2016, 31(2): 20−27. doi: 10.3969/j.issn.1001-7461.2016.02.04
[13] Deng Z J, Hu X F, Ai X R, et al. Dormancy release of Cotinus coggygria, seeds under a pre-cold moist stratification: an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis[J]. New Forests, 2016, 47(1): 105−118. doi: 10.1007/s11056-015-9496-2
[14] 陆秀君, 董胜君, 毛红玉. 黄栌容器育苗及其对苗木耐旱性的影响[J]. 北京林业大学学报, 2001, 23(增刊):30−31.Lu X J, Dong S J, Mao H Y. Study on container seedling-raising of Cotinus coggygria var. pubescens and its effect on seedling’s drought resistance[J]. Journal of Beijing Forestry University, 2001, 23(Suppl.): 30−31.
[15] 李红云, 李焕平, 杨吉华, 等. 4种灌木林地土壤物理性状及抗侵蚀性能的研究[J]. 水土保持学报, 2006, 20(3):13−16. doi: 10.3321/j.issn:1009-2242.2006.03.004Li H Y, Li H P, Yang J H, et al. Study on soil physical properties and anti-erosion capability under four kinds of shrubbery[J]. Journal of Soil and Water Conservation, 2006, 20(3): 13−16. doi: 10.3321/j.issn:1009-2242.2006.03.004
[16] 李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1):48−54.Li J H, Qi X H, Xu C Y, et al. Short term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Journal of Beijing Forestry University, 2014, 36(1): 48−54.
[17] 李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41.
[18] 杨晓霞, 冷平生, 郑健, 等. 暴马丁香不同种源种子和幼苗的表型性状变异及其与地理-气候因子的相关性[J]. 植物资源与环境学报, 2016, 25(3):80−89. doi: 10.3969/j.issn.1674-7895.2016.03.10Yang X X, Leng P S, Zheng J, et al. Variation of phenotypic traits of seed and seedling of Syringa reticulata subsp. amurensis from different provenances and their correlations with geographic-climatic factors[J]. Journal of Plant Resources and Environment, 2016, 25(3): 80−89. doi: 10.3969/j.issn.1674-7895.2016.03.10
[19] 安海龙, 谢乾瑾, 刘超, 等. 水分胁迫和种源对黄柳叶功能性状的影响[J]. 林业科学, 2015, 51(10):75−84.An H L, Xie Q J, Liu C, et al. Effects of water stress and provenance on leaf functional traits of Salix gordejevii[J]. Scientia Silvae Sinicae, 2015, 51(10): 75−84.
[20] 白雪卡, 刘超, 纪若璇, 等. 种源地气候对蒙古莸光响应特性的影响[J]. 生态学报, 2018, 38(23):8425−8433.Bai X K, Liu C, Ji R X, et al. Effects of origin climate on light response characteristics of Caryopteris mongholica[J]. Acta Ecologica Sinica, 2018, 38(23): 8425−8433.
[21] Ramírez-Valiente J A, Koehler K, Cavenderbares J. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes)[J]. Tree Physiology, 2015, 35(5): 521−534. doi: 10.1093/treephys/tpv032
[22] 李永华, 卢琦, 吴波, 等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1):88−98.Li Y H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaption characteristics in arid ecosystems[J]. China Journal of Plant Ecology, 2012, 36(1): 88−98.
[23] 靳泽辉, 苗峻峰, 张永端, 等. 华北地区极端降水变化特征及多模式模拟评估[J]. 气象科技, 2017, 45(1):91−100.Jin Z H, Miao J F, Zhang Y D, et al. Characteristics of extreme precipitation and its multi-model simulation evaluation in North China[J]. Meteorological Science and Technology, 2017, 45(1): 91−100.
[24] 刘大川, 周磊, 武建军. 干旱对华北地区植被变化的影响[J]. 北京师范大学学报(自然科学版), 2017, 53(2):222−228.Liu D C, Zhou L, Wu J J. Drought impacts on vegetation changes in North China[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(2): 222−228.
[25] 王涛, 罗艳, 钟亦鸣, 等. 西北与华北地区现代降水变化趋势的对比[J]. 水文, 2017, 45(1):91−100.Wang T, Luo Y, Zhong Y M, et al. Comparison of recent precipitation tendency between Northwest and North China[J]. Journal of China Hydrology, 2017, 45(1): 91−100.
[26] 李岚, 王厚领, 赵琳, 等. 异源表达Peu-miR473a增强拟南芥的抗旱性[J]. 北京林业大学学报, 2015, 37(5):30−39.Li L, Wang H L, Zhao L, et al. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2015, 37(5): 30−39.
[27] 朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9):72−81.Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72−81.
[28] Maseda P H, Fernández R J. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances[J]. Tree Physiology, 2016, 36(2): 243.
[29] Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications[J]. Journal of Ecology, 2006, 94(6): 1103−1116. doi: 10.1111/j.1365-2745.2006.01176.x
[30] 朱济友, 于强, Di Y, et al. 叶生态特征及其相关性对下垫面热效应的生态权衡[J]. 农业机械学报, 2018, 49(1):201−209.Zhu J Y, Yu Q, Di Y., et al. Ecological balance of leaf ecological characteristics and their correlation to thermal effects of underlying surfaces[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(1): 201−209.
[31] Gholami M, Rahemi M, Rastegar S. Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.)[J]. Scientia Horticulturae, 2012, 143: 7−14. doi: 10.1016/j.scienta.2012.05.012
[32] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought - from genes to the whole plant[J]. Functional Plant Biology, 2003, 30: 239−264. doi: 10.1071/FP02076
[33] Marron N, Dreyer E. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Lusisa_Avanzo’[J]. Tree Physiology, 2003, 23(18): 1225−1235. doi: 10.1093/treephys/23.18.1225
[34] Anderegg L D L, Hillerislambers J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms[J]. Global Change Biology, 2016, 22: 1029−1045. doi: 10.1111/gcb.13148
[35] Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014, 102(2): 275−301. doi: 10.1111/1365-2745.12211
[36] Volaire F. Plant traits and functional types to characterise drought survival of pluri-specific perennial herbaceous swards in Mediterranean areas[J]. European Journal of Agronomy, 2008, 29: 116−124. doi: 10.1016/j.eja.2008.04.008