[1] 杜灵洁, 杨晨娜, 李尔敏, 等. 荚蒾属植物药用资源研究进展[J]. 台州学院学报, 2017, 39(6):6−9.

Du L J, Yang C N, Li E M, et al. Research progress on medicinal resources of Viburnum[J]. Journal of Taizhou University, 2017, 39(6): 6−9.
[2] 庞晓飞, 陈晓凤, 郭守东, 等. 天目琼花化学成分与药理作用研究进展[J]. 泰山医学院学报, 2015, 36(3):358−360. doi:  10.3969/j.issn.1004-7115.2015.03.055

Pang X F, Chen X F, Guo S D, et al. Research progress in chemical constituents and pharmacological effects of Viburnum sargentii Koehne[J]. Journal of Taishan Medical College, 2015, 36(3): 358−360. doi:  10.3969/j.issn.1004-7115.2015.03.055
[3] 李攀登, 李金玲, 王宏伟, 等. 鸡树条荚蒾化学成分测定分析[J]. 人参研究, 2009, 21(2):16−19. doi:  10.3969/j.issn.1671-1521.2009.02.005

Li P D, Li J J, Wang H W, et al. Determination and analysis of chemical constituents of Viburnum sargentii Koehne[J]. Ginseng Research, 2009, 21(2): 16−19. doi:  10.3969/j.issn.1671-1521.2009.02.005
[4] 宋扬. 鸡树条荚蒾果实中酚类成分的研究[D]. 长春: 吉林大学, 2015.

Song Y. Study on phenolic constituents in Viburnum sargentii Koehne[D]. Changchun: Jilin University, 2015.
[5] 李敏, 李玉武, 李余先, 等. 鸡树条荚蒾对小鼠血清SOD及MDA水平的影响[J]. 吉林农业科技学院学报, 2013, 22(1):4−6. doi:  10.3969/j.issn.1674-7852.2013.01.002

Li M, Li Y W, Li Y X, et al. 2013. Effect of Viburnum sargentii Koehne on serum SOD and MDA levels in mice[J]. Journal of Jilin Agricultural Science and Technology College, 2013, 22(1): 4−6. doi:  10.3969/j.issn.1674-7852.2013.01.002
[6] Chen J, Shao J, Zhao C, et al. Chemical constituents from Viburnum fordiae Hanceand their anti-inflammatory and antioxidant activities[J]. Archives of Pharmacal Research, 2018, 41(6): 1−8.
[7] 李敏, 赵权, 武晓林. 鸡树条荚蒾抗炎活性研究[J]. 黑龙江农业科学, 2012, 2012(11):136−138. doi:  10.3969/j.issn.1002-2767.2012.11.038

Li M, Zhao Q, Wu X L. Anti-inflammatory activity of Viburnum sargentii Koehne[J]. Heilongjiang Agricultural Science, 2012, 2012(11): 136−138. doi:  10.3969/j.issn.1002-2767.2012.11.038
[8] 弥春霞, 陈欢, 任玉兰, 等. 鸡树条荚蒾果实提取物抑菌作用研究[J]. 安徽农业科学, 2010, 38(22):11767−11782. doi:  10.3969/j.issn.0517-6611.2010.22.038

Mi C X, Chen H, Ren Y L, et al. Study on antibacterial activity of extracts from the fruits of Viburnum sargentii Koehne[J]. Journal of Anhui Agricultural Sciences, 2010, 38(22): 11767−11782. doi:  10.3969/j.issn.0517-6611.2010.22.038
[9] 张琳. 鸡树条荚蒾果实的药用研究[D]. 哈尔滨: 黑龙江中医药大学, 2003.

Zhang L. Medicinal study of Viburnum sargentii Koehne[D]. Harbin: Heilongjiang University of Traditional Chinese Medicine, 2003.
[10] Bae K E, Chong H S, Kim D S, et al. Compounds from Viburnum sargentii Koehne and evaluation of their cytotoxic effects on human cancer cell lines[J]. Molecules, 2010, 15(7): 4599−4609. doi:  10.3390/molecules15074599
[11] Iwai K, Onodera A, Matsue H. Inhibitory effects of Viburnum dilatatum Thunb.(gamazumi) on oxidation and hyperglycemia in ratswith tozotocin induced diabetes[J]. Agric Food Chem, 2004, 52(4): 1002−1007. doi:  10.1021/jf0302557
[12] 符群, 王梦丽, 李卉, 等. 高速剪切-超声联合提取鸡树条荚蒾果降血糖成分的工艺研究[J]. 现代食品科技, 2018, 34(11):157−164.

Fu Q, Wang M L, Li H, et al. High-speed shear-ultrasonic combined extraction of hypoglycemic components from Viburnum sargentii Koehne[J]. 现代食品科技, 2018, 34(11): 157−164.
[13] 阎芙洁. 桑葚花色苷对糖代谢的调控作用及其机制研究[D]. 杭州: 浙江大学, 2018.

Qi F J. Study on the beneficicl effect and mechanism of mulberry anthocyanins on glucose metabolism regulation[D]. Hangzhou: Zhejiang University, 2018.
[14] Adeva A, Maria M, Ameneiros R, et al. Insulin resistance is associated with subclinical vascular disease in humans[J]. World Journal of Diabetes, 2019, 10(2): 63−77. doi:  10.4239/wjd.v10.i2.63
[15] Adams L A, Anstee Q M, Tilg H, et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases[J]. Gut, 2017, 66(6): 1138−1153. doi:  10.1136/gutjnl-2017-313884
[16] Ranilla LG, Kwon Y, Apostolidis, et al. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America[J]. Bioresource Technology, 2010, 101(12): 4676−4689. doi:  10.1016/j.biortech.2010.01.093
[17] 王晓峰, 周建. 齐墩果酸对胰岛素抵抗HepG2关键酶活性的影响[J]. 医药导报, 2015(9):1139−1141. doi:  10.3870/j.issn.1004-0781.2015.09.004

Wang X F, Zhou J. Effects of oleanolic acid on key enzyme activities of insulin resistance HepG2[J]. Journal of Medical Herald, 2015(9): 1139−1141. doi:  10.3870/j.issn.1004-0781.2015.09.004
[18] 吴博. 十子代平方改善IR-HepG2细胞的胰岛素抵抗及对肝糖原含量、HK、PK、GLUT-2的影响[D]. 唐山: 华北理工大学, 2016.

Wu B. Shizidaipingfang ameliorate insulin esistance in Insulin-resistant HepG2 cells and its influence on the content of the liver glycogen, HK, PK, GLUT-2[D]. Tangshan: North China University of Technology, 2016.
[19] Tang Z, Xia N, Yuan X, et al. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells[J]. Biochemical and Biophysical Research Communications, 2015, 465(4): 670−677. doi:  10.1016/j.bbrc.2015.08.008
[20] Li L J, Li G D, Wei H L, et al. Insulin resistance reduces sensitivity to Cis-platinum and promotes adhesion, migration and invasion in HepG2 cells[J]. Asian Pac J Cancer Prev, 2014, 15(7): 3123−3128. doi:  10.7314/APJCP.2014.15.7.3123
[21] Teng W D, Yin W J, Zhao L, et al. Resveratrol metabolites ameliorate insulin resistance in HepG2 hepatocytes by modulating IRS-1/AMPK[J]. RSC Advances, 2018, 63(8): 36034−36042.
[22] 毕显禹. 鸡树条荚蒾繁育技术研究[D]. 哈尔滨: 东北林业大学, 2018.

Bi X Y. Study on breeding technologies of Viburnum sargentii Koehne[D]. Harbin: Northeast Forestry University, 2018.
[23] 黄皓, 王珍妮, 李莉, 等. 甘油水溶液提取米糠多酚绿色工艺优化及多酚种类鉴定[J]. 农业工程学报, 2019, 35(4):305−312. doi:  10.11975/j.issn.1002-6819.2019.04.038

Huang H, Wang Z N, Li L, et al. Optimization of green extrction process and identification of polyphenols variety from rice bran using glycerol/water system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 305−312. doi:  10.11975/j.issn.1002-6819.2019.04.038
[24] 杨少青. 以胰岛素抵抗肝细胞模型筛选选糖尿病药物及环烯醚萜类化合物降糖机制的研[D]. 西安: 西北大学, 2013.

Yang S Q. Screening the anti-hyperglycemic agents by an insulin resistance cell model and meserch of anti-hyperglycemic mechanism of iridoid glucosides[D]. Xi’an: Northwest University, 2013.
[25] 齐佳, 王广策, 郑国亚, 等. 岩藻黄素对胰岛素抵抗HepG2细胞葡萄糖消耗的影响[J]. 中国海洋药物, 2017, 36(5):49−54.

Qi J, Wang G C, Zheng G Y, et al. Effects of fucoxanthin on glucose consumption in insulin resistant HepG2 cells[J]. Chinese Journal of Marine Medicine, 2017, 36(5): 49−54.
[26] Zhang X D. A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays[J]. Genomics, 2007, 89(4): 552−561. doi:  10.1016/j.ygeno.2006.12.014
[27] Sui Y, Wu Z. Alternative statistical parameter for high-throughput screening assay quality assessment[J]. J Biomol Screen, 2007, 12(2): 229−234. doi:  10.1177/1087057106296498
[28] Shao J H, Chen J, Zhao C C, et al. Insecticidal and α-glucosidase inhibitory activities of chemical constituents from Viburnum fordiae Hance[J]. Natural Product Research, 2018(4): 1−6.
[29] Iwai K, Kim M Y, Onodera A, et al. Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb[J]. Agric Food Chem, 2006, 54(13): 4588−4592. doi:  10.1021/jf0606353
[30] Ma J Z, Yang X W, Zhang J J, et al. Sterols and Terpenoids from Viburnum odoratissimum[J]. Natural Products & Bioprospecting, 2014, 4(3): 175−180.
[31] Zhao C C, Chen J, Shao J, et al. Neolignan constituents with potential beneficial effects in prevention of type 2 diabetes from Viburnum fordiae Hance fruits[J]. Journal of Agricultural and Food Chemistry, 2018, 66(40): 10421−10430. doi:  10.1021/acs.jafc.8b03772
[32] Zierath J R, Krook A. Molecular mechanisms underlying insulin resistance in skeletal muscle[J]. Lakartidningen, 2010, 107(45): 2802−2805.
[33] Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. Cell Physiol, 2019, 234(6): 8152−8161. doi:  10.1002/jcp.27603
[34] Gray S L, Donald C. Hyperinsulinemiap recedes insulin resistance in mice lacking pancreatic β-cell leptin signaling[J]. Endocrinology, 2010, 151(9): 4178−4186. doi:  10.1210/en.2010-0102
[35] Chen K, Li G, Geng F, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats[J]. Apoptosis, 2014, 19(6): 946−957. doi:  10.1007/s10495-014-0977-0
[36] Zheng T, Yang X, Wu D, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway[J]. Br J Pharmacol, 2015, 172(13): 3284−3301. doi:  10.1111/bph.13120