高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

豫西浅山区不同世代刺槐林土壤养分与结构特征

王雅慧 彭祚登 李云

王雅慧, 彭祚登, 李云. 豫西浅山区不同世代刺槐林土壤养分与结构特征[J]. 北京林业大学学报, 2020, 42(3): 54-64. doi: 10.12171/j.1000-1522.20190263
引用本文: 王雅慧, 彭祚登, 李云. 豫西浅山区不同世代刺槐林土壤养分与结构特征[J]. 北京林业大学学报, 2020, 42(3): 54-64. doi: 10.12171/j.1000-1522.20190263
Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. doi: 10.12171/j.1000-1522.20190263
Citation: Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. doi: 10.12171/j.1000-1522.20190263

豫西浅山区不同世代刺槐林土壤养分与结构特征

doi: 10.12171/j.1000-1522.20190263
基金项目: 国家重点研发课题“刺槐速生建筑材林高效培育技术研究”(2017YFD0600503)
详细信息
    作者简介:

    王雅慧。主要研究方向:用材与能源林培育理论与技术。Email:wyhzemail@126.com 地址:100083 北京市海淀区清华东路35号北京林业大学

    责任作者:

    彭祚登,博士,副教授。主要研究方向:城市森林培育理论于技术,林木种苗培育理论与技术。Email:zuodeng@sina.com 地址:同上

Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China

  • 摘要: 目的探究林木对立地质量的影响是人工林可持续经营研究的重要方向,研究刺槐人工林多代更替经营过程中土壤结构与养分的变化情况,可以为刺槐人工林多代经营目标下土壤地力调控措施的制定提供理论依据。方法本研究以豫西浅山丘陵区相同龄级的一代、二代、三代刺槐林及对照无林地为研究对象,对其土壤养分与结构特征进行了比较研究。结果(1)本研究中刺槐一代林到二代林土壤养分显著增加(P < 0.05)。在表土层(0 ~ 5 cm)中,有机质、全氮、硝态氮含量分别增加了94.0%、91.0%、169.4%,在10 ~ 20 cm层分别增加了82.77%、61.14%、343.35%,在40 ~ 60 cm层分别增加了53.25%、21.60%、556.20%,一代林地全氮含量在各土层由浅到深分别为0.63、0.39、0.29、0.28 g/kg。刺槐二代林和三代林土壤养分含量整体差异不显著。与对照地相比,刺槐一代林地的有机质、全氮、全磷含量均显著低于对照(P < 0.05),但对照地的硝态氮含量显著低于一代林地(P < 0.05)。土壤表层养分含量高于深层,且随世代的增加养分含量在上层土壤的增量大于深层土壤。从化学计量学角度分析,各土层中一代林地的C/P、N/P都表现出高于二、三代林地。相比于有机质和全氮含量,随世代增加过程中C/N值较为稳定,深土层的C/P与N/P较稳定。从一代林到三代林,表土层和10 ~ 20 cm层的C/P的增幅大于N/P的增幅。(2)从土壤密度、孔隙度、团聚体反映的土壤结构性看,非毛管孔隙度在10 ~ 20 cm处,二代林地、三代林地相比于一代林地分别增加了11.4%,21.4%,在40 ~ 60 cm层也随世代增加呈上升趋势。土层越深各代际林地间土壤密度变化幅度越大,除表土层外,土壤密度在其他各土层随世代总体呈下降趋势。各样地土壤表层水稳性团聚体数量及稳定性表现为对照地 > 二、三代林地 > 一代林地。从整体上看,土壤结构表层优于深层,二、三代林地优于一代林地。(3)基于土壤养分与结构性质的主成分分析表明,林木对深层土壤的作用明显,二、三代林地土壤状况显著优于一代林,二代林地的表层土壤性质优于三代,深层土壤三代优于二代。结论在豫西浅山区,刺槐林经营世代更替对土壤养分和结构有明显的影响,一代林到二代林经营过程中土壤养分含量显著增加,表层养分增量大于深层,土壤结构得到改善,经营到三代林维持相对稳定。在世代增加过程中碳素比氮素积累的速度快,且碳氮的供应能力小于磷,代际更替过程中存在着养分失衡加重的问题。

     

  • 图  1  不同世代刺槐林土壤养分含量的比较

    不同字母表示同一土层各样地间差异显著(P < 0.05)。下同。Different letters indicate significant differences among different sampling sites in same soil layer at P < 0.05 level. The same below.

    Figure  1.  Comparition in soil nutrient contents in Robinia pseudoacacia plantations of different generations

    表  1  样地基本信息

    Table  1.   General situation of sample plots

    样地编号
    Sample plot No.
    林龄/a
    Stand age/year
    地理坐标
    Geographical coordinate
    海拔
    Altitude/m
    坡度
    Slope/(°)
    胸径
    DBH/cm
    树高
    Tree height/m
    pH含水率
    Soil water content/%
    YL934°29′02″N,111°28′53″E760224.845.407.1416.80
    EL1034°25′30″N,111°27′60″E660206.878.857.0614.87
    SL1034°22′29″N,111°31′55″E730165.228.157.1415.62
    CK34°25′34″N,111°29′49″E670137.1416.60
    注:YL. 茶沟村的一代林;EL. 六道头的二代林;SL. 伙子村的三代林;CK. 湾凹的对照荒坡。下同。Notes: YL, first generation forests in Chagou Village; EL, second generation forests in Liudaotou; SL, third generation forests in Huozi Village; CK, wastelands in Wan’ao. The same below.
    下载: 导出CSV

    表  2  不同土层各样地土壤密度及孔隙状况

    Table  2.   Soil bulk density and porosity in different soil layers of each sample plot

    土层
    Soil
    layer/cm
    样地
    Sample
    plot
    土壤密度
    Soil bulk density/
    (g·cm− 3)
    毛管孔隙度
    Capillary porosity/%
    非毛管孔隙度
    Non-capillary porosity/%
    0 ~ 5YL1.51 ± 0.04a36.83 ± 1.25a4.11 ± 1.16a
    RL1.38 ± 0.11a34.78 ± 1.31a7.43 ± 1.39a
    SL1.50 ± 0.04a35.47 ± 0.48a5.92 ± 2.52a
    CK1.50 ± 0.11a36.67 ± 2.04a8.60 ± 6.61a
    10 ~ 20YL1.52 ± 0.04ab37.83 ± 1.51a3.60 ± 1.08b
    RL1.55 ± 0.03a35.46 ± 0.88b4.01 ± 1.58ab
    SL1.50 ± 0.03b35.80 ± 1.87b4.37 ± 0.94a
    CK1.52 ± 0.03a35.27 ± 0.91b4.97 ± 0.44a
    40 ~ 60YL1.57 ± 0.03a38.37 ± 2.70a2.30 ± 0.81b
    RL1.59 ± 0.05a36.52 ± 1.96a2.95 ± 0.95a
    SL1.46 ± 0.03b38.75 ± 2.38a3.45 ± 0.61a
    CK1.58 ± 0.05a38.22 ± 2.37a2.67 ± 0.43ab
    60 ~ 80YL1.54 ± 0.05b40.13 ± 1.85a3.43 ± 1.47a
    RL1.55 ± 0.06ab38.09 ± 1.65b3.36 ± 1.88a
    SL1.44 ± 0.02c39.54 ± 1.29ab3.37 ± 0.82a
    CK1.60 ± 0.02a40.64 ± 1.67a3.44 ± 1.35a
    注:表中数据为平均值 ± 标准差。同列不同字母间代表差异显著(P < 0.05)。Notes: data in table are mean ± SD. In the same column, different letters represent significant differences (P < 0.05).
    下载: 导出CSV

    表  3  表层土壤水稳性团聚体各指标及机械组成

    Table  3.   Indexes of soil water-stable aggregates and soil mechanical composition in the surface soil

    样地 Sample plotC> 0.25/%PAD/%MWD/mmGMD/mmD砂粒 Sand/%粉粒 Silt/%黏粒 Clay/%
    YL44.11 ± 3.17b54.37 ± 3.24a1.35 ± 0.06b0.40 ± 0.01b2.84 ± 0.02a32.38 ± 0.13a32.08 ± 0.29b33.40 ± 0.47ab
    EL60.32 ± 3.26a35.03 ± 3.72b2.00 ± 0.27a0.67 ± 0.11a2.76 ± 0.02a25.28 ± 2.88b39.12 ± 3.21a31.12 ± 0.26b
    SL61.93 ± 5.61a35.67 ± 5.50b2.21 ± 0.51a0.76 ± 0.23a2.74 ± 0.04a28.40 ± 0.34ab35.29 ± 0.07ab33.09 ± 0.02b
    CK64.14 ± 3.77a33.78 ± 3.71b2.38 ± 0.24a0.85 ± 0.13a2.72 ± 0.03b29.34 ± 1.38a33.51 ± 0.78b35.95 ± 1.96a
    注:C> 0.25.直径 > 0.25 mm水稳性团聚体含量;PAD. 团聚体破坏率;MWD.平均质量直径;GMD.平均几何直径;D.分形维数. Notes:C> 0.25, water-stable aggregate content with diameter > 0.25 mm; PAD, percentage of aggregate destruction. MWD, mean mass diameter; GMD, mean geometric diameter; D, fractal dimension value.
    下载: 导出CSV

    表  4  主成分分析的特征根及其贡献率

    Table  4.   Eigenvalue and its contribution rate in principal components analysis

    类别
    Type
    主成分
    Principal component
    特征根值
    Eigenvalue
    贡献率
    Contribution rate/%
    累贡献率
    Cumulative
    contribution rate/%
    A12.98674.6474.64
    20.76819.2093.84
    B11.98266.0666.06
    20.67222.4088.46
    注:A. 土壤养分指标;B. 土壤密度和土壤孔隙度指标。下同。Notes: A, soil nutrient index; B, soil bulk density and soil porosity index. The same below.
    下载: 导出CSV

    表  5  各样地不同土层土壤质量指数排序

    Table  5.   Sorting of soil quality index of different soillayers in varied sample plots

    AB
    土样编号
    Soil sample No.
    得分
    Score
    土样编号
    Soil sample No.
    得分
    Score
    RL-1 1.40 RL-1 2.00
    CK-1 1.37 CK-1 1.07
    SL-1 1.21 SL-1 0.59
    YL-1 0.01 SL-4 0.45
    RL-2 0.08 SL-3 0.32
    SL-2 0.03 SL-2 0.26
    CK-2 0.00 CK-2 0.23
    SL-3 − 0.22 YL-1 0.00
    RL-3 − 0.26 YL-2 − 0.16
    YL-2 − 0.30 RL-2 − 0.24
    YL-4 − 0.36 YL-4 − 0.47
    CK-3 − 0.54 RL-4 − 0.48
    SL-4 − 0.66 RL-3 − 0.86
    RL-4 − 0.67 YL-3 − 0.88
    YL-3 − 0.68 CK-3 − 0.89
    CK-4 − 0.97 CK-4 − 1.02
    注:土样编号为“样地−土层”,1为表土层(0 ~ 5 cm),2为10 ~ 20 cm层,3为40 ~ 60 cm层,4为60 ~ 80 cm层。Notes: soil sample is presented as sample plot-soil layer, 1 means surface soil layer (0−5 cm), 2 means 10−20 cm deep soil, 3 means 40−60 cm deep soil, 4 means 60−80 cm deep soil.
    下载: 导出CSV

    表  6  样地土壤物理性质与定量地形因子的相关性分析

    Table  6.   Correlation analysis between soil properties and several quantitative terrain factors in the sample plots

    因子
    Factor
    坡向
    Slope aspect (Sin)
    坡向
    Slope aspect (Cos)
    坡度
    Slope degree
    海拔
    Altitude
    全磷
    Total P
    0.517 − 0.43 − 0.577 − 0.05
    全氮
    Total N
    0.409 − 0.351 − 0.444 − 0.235
    有机质
    Organic matter
    0.468 − 0.419 − 0.426 − 0.275
    NO3-N 0.219 − 0.17 − 0.241 0.286
    有效钾
    Avalibale K
    0.411 − 0.393 − 0.263 − 0.279
    砂粒
    Sand
    − 0.449 0.401 0.443 0.403
    粉粒
    Silt
    0.23 − 0.191 − 0.249 0.028
    黏粒
    Clay
    0.474 − 0.447 − 0.413 − 0.731*
    土壤密度
    Soil bulk density
    − 0.111 0.052 0.3 − 0.069
    毛管孔隙度
    Capillary porosity
    − 0.663 0.578 0.668 0.337
    非毛管孔隙度
    Non-capillary porosity
    0.478 − 0.414 − 0.551 − 0.509
    注:*表示在 0.05 水平(双侧)上显著相关。Note:* means significant correlation at the 0.05 level (bilateral).
    下载: 导出CSV
  • [1] 联合国粮食和农业组织. 2015年全球森林资源评估报告[R]. 罗马: FAO, 2015.

    Food and Agriculture Organization of the United Nations. Global forest resources assessment 2015[R]. Rome: FAO, 2015.
    [2] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 131(1):1−14.

    Sheng W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 131(1): 1−14.
    [3] 盛炜彤, 范少辉. 人工林长期生产力保持机制研究的背景、现状和趋势[J]. 林业科学研究, 2004, 17(1):106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018

    Sheng W T, Fan S H. Study on the mechanism of maintaining long-term productivity of lantation: background, present condition and trends[J]. Forest Research, 2004, 17(1): 106−115. doi: 10.3321/j.issn:1001-1498.2004.01.018
    [4] 杨玉盛, 杨伦增, 俞新妥. 杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J]. 福建林学院学报, 1996, 16(2):97−100.

    Yang Y S, Yang L Z, Yu X T. Study on the change of soil fertility after replacement of miscellaneous woods in Nanping Creek[J]. Journal of Fujian College of Forestry, 1996, 16(2): 97−100.
    [5] 叶绍明, 温远光, 杨梅, 等. 连栽桉树人工林植物多样性与土壤理化性质的关联分析[J]. 水土保持学报, 2010, 24(4):246−250.

    Ye S M, Wen Y G, Yang M, et al. Correlation analysis on biodiversity and soil physical & chemical properties of Eucalyptus spp. plantations under successive rotation[J]. Journal of Soil and Water Conservation, 2010, 24(4): 246−250.
    [6] Kirschbaum M U F, Guo L B, Gifford R M. Observed and modelled soil carbon and nitrogen changes after planting a Pinus radiata stand onto former pasture[J]. Soil Biology & Biochemistry, 2008, 40(1): 247−257.
    [7] 张社奇, 王国栋, 张蕾. 黄土高原刺槐林对土壤养分时空分布的影响[J]. 水土保持学报, 2008, 22(5):91−95. doi: 10.3321/j.issn:1009-2242.2008.05.021

    Zhang S Q, Wang G D, Zhang L. Time-space distributive feature of soil nutrient and chemical characteristics ofRobinia pseudoacia L. plantation forestland in Loess Plateau[J]. Journal of Soil and Water Conservation, 2008, 22(5): 91−95. doi: 10.3321/j.issn:1009-2242.2008.05.021
    [8] 吴平, 薛建辉. 典型喀斯特地区3种人工林对土壤理化和微生物特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(5):67−72.

    Wu P, Xue J H. Effects of three different plantations on soil physicochemical and microbial characteristics in kast region[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(5): 67−72.
    [9] 王春梅, 刘艳红, 邵彬, 等. 量化退耕还林后土壤碳变化[J]. 北京林业大学学报, 2007, 29(3):112−119. doi: 10.3321/j.issn:1000-1522.2007.03.018

    Wang C M, Liu Y H, Shao B, et al. Quantifying the soil carbon changes following the afforestation of former arable land[J]. Journal of Beijing Forestry University, 2007, 29(3): 112−119. doi: 10.3321/j.issn:1000-1522.2007.03.018
    [10] 王艳芳, 刘领, 李志超, 等. 豫西黄土丘陵区不同林龄栎类和侧柏人工林碳、氮储量[J]. 应用生态学报, 2018, 29(1):25−32.

    Wang Y F, Liu L, Li Z C, et al. Storage of carbon and nitrogen in Quercus and Platycladus orientalis plantations at different ages in the hilly area of western Henan Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 25−32.
    [11] 杨芳绒. 河南洛宁浅山区刺槐能源林生物量与热值研究[D]. 北京: 北京林业大学, 2013.

    Yang F R. The study on biomass and caloric value of locust energy forests in Luoning Hilly Region, Henan[D]. Beijing: Beijing Forestry University, 2013.
    [12] Zhang B, Horn R. Mechanisms of aggregate stabilization in Ultisols from subtropical China[J]. Geoderma, 2001, 99(1/2): 123−145.
    [13] 吕春娟, 路琼. 矿区复垦植被土壤涵养水源功能的研究[J]. 水土保持学报, 2009, 23(3):184−188. doi: 10.3321/j.issn:1009-2242.2009.03.040

    Lü C J, Lu Q. Water-source conservation function of vegetation soil in reclamation mine[J]. Journal of Soil and Water Conservation, 2009, 23(3): 184−188. doi: 10.3321/j.issn:1009-2242.2009.03.040
    [14] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2):351−358.

    Zhao N, Meng P, Zhang J S, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 351−358.
    [15] 孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系[J]. 生态学报, 2016, 36(21):6879−6888.

    Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests[J]. Acta Ecologica Sinica, 2016, 36(21): 6879−6888.
    [16] 何淑勤, 宫渊波, 郑子成, 等. 不同植被类型条件下土壤抗蚀性变化特征及其影响因素[J]. 水土保持学报, 2013, 27(5):17−22. doi: 10.3969/j.issn.1009-2242.2013.05.004

    He S Q, Gong Y B, Zheng Z C, et al. Changes and influences of soil anti-erodibility under different vegetation types[J]. Journal of Soil and Water Conservation, 2013, 27(5): 17−22. doi: 10.3969/j.issn.1009-2242.2013.05.004
    [17] 洛宁县人民政府. 洛宁县特色农业[EB/OL]. (2017−07−25) [2020−03−04]. http://www.luoning.gov.cn/2017/0725/199.html.

    Luoning County People’s Government. Characteristic agriculture in Luoning County. [EB/OL]. (2017−07−25) [2020−03−04]. http://www.luoning.gov.cn/2017/0725/199.html.
    [18] 张晋爱, 张兴昌, 邱丽萍, 等. 黄土丘陵区不同年限柠条林地土壤质量变化[J]. 农业环境科学学报, 2007, 26(增刊1):136−140. doi: 10.3321/j.issn:1672-2043.2007.z1.030

    Zhang J A, Zhang X C, Qiu L P, et al. Dynamics of soil quality in a loess hilly area grown with Caragana korshinskii[J]. Journal of Agro-environment Science, 2007, 26(Suppl.1): 136−140. doi: 10.3321/j.issn:1672-2043.2007.z1.030
    [19] 许明祥, 刘国彬, 赵允格. 黄土丘陵区土地利用及环境因子对土壤质量指标变异性的影响[J]. 应用生态学报, 2011, 22(2):409−417.

    Xu M X, Liu G B, Zhao Y G. Effeets of land use and environmental factors on the variability of soil quality indicators in hilly Loess Plateau region of China[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 409−417.
    [20] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362−369. doi: 10.2136/sssaj1992.03615995005600020005x
    [21] Brye K R, Slaton N A, Norman R J. Soil physical and biological properties as affected by land leveling in a clayey aquert[J]. Soil Science Society of America Journal, 2006, 70(2): 631−642. doi: 10.2136/sssaj2005.0185
    [22] Yüksek T, Yüksek F. The effects of restoration on soil properties in degraded land in the semi-arid region of Turkey[J]. Catena, 2010, 84(1/2): 47−53.
    [23] 李桂林, 陈杰, 孙志英, 等. 基于土壤特征和土地利用变化的土壤质量评价最小数据集确定[J]. 生态学报, 2007, 27(7):2715−2724. doi: 10.3321/j.issn:1000-0933.2007.07.007

    Li G L, Chen J, Sun Z Y, et al. Establishing a minimum dataset for Soil quality assessment based on soil properties and land use change[J]. Acta Ecologica Sinica, 2007, 27(7): 2715−2724. doi: 10.3321/j.issn:1000-0933.2007.07.007
    [24] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1−14.

    Sheng W T. On the maintenance of long-term productivity of plantation in China[J]. Forest Research, 2018, 31(1): 1−14.
    [25] 韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制[J]. 应用生态学报, 2018, 29(7):2433−2444.

    Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2433−2444.
    [26] 许明祥, 刘国彬. 黄土丘陵区刺槐人工林土壤养分特征及演变[J]. 植物营养与肥料学报, 2004, 10(1):40−46. doi: 10.3321/j.issn:1008-505X.2004.01.008

    Xu M X, Liu G B. The characteristics and evolution of soil nutrient in artificial black locust (Robinia pseudoacacia) forest land in the hilly Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2004, 10(1): 40−46. doi: 10.3321/j.issn:1008-505X.2004.01.008
    [27] Zuber S M, Behnke G D, Nafziger E D, et al. Crop rotation and tillage effects on soil physical and chemical properties in Illinois[J]. Agronomy Journal, 2015, 107(3): 971−978. doi: 10.2134/agronj14.0465
    [28] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi: 10.5846/stxb201212101772

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi: 10.5846/stxb201212101772
    [29] Tian H, Chen G, Zhang C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139−151. doi: 10.1007/s10533-009-9382-0
    [30] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biochemistry, 2007, 85(3): 235−252.
    [31] 焦梦妍, 从怀军, 姚静, 等. 自然恢复序列梯度上退耕地土壤容重变化及其蓄水性能效应[J]. 水土保持学报, 2018, 32(5):128−133.

    Jiao M Y, Cong H J, Yao J, et al. Soil bulk density changes and its water-storage capacity of abandoned farmland in natural restoration series gradient of loess hilly-gully region[J]. Journal of Soil and Water Conservation, 2018, 32(5): 128−133.
    [32] 李法虎. 土壤物理化学[M]. 北京: 化学工业出版社, 2006.

    Li F H. Physical chemistry of soil[M]. Beijing: Chemical Industry Press, 2006.
    [33] Pirmoradian N, Sepaskhah A R, Hajabbasi M A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosystems Engineering, 2005, 90(2): 227−234. doi: 10.1016/j.biosystemseng.2004.11.002
    [34] 庄正, 张芸, 张颖, 等. 不同发育阶段杉木人工林土壤团聚体分布特征及其稳定性研究[J]. 水土保持学报, 2017, 31(6):183−188.

    Zhuang Z, Zhang Y, Zhang Y, et al. Study on distribution characteristics and stability of soil aggregate in Chinese fir plantation at different developmental stages[J]. Journal of Soil and Water Conservation, 2017, 31(6): 183−188.
    [35] 张参参, 吴小刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2):19−28.

    Zhang C C, Wu X G, Liu B, et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19−28.
    [36] 傅伯杰, 陈利顶, 邱扬, 等. 黄土丘陵小流域土壤物理性质的空间变异[J]. 地理学报, 2002, 57(5):587−594. doi: 10.3321/j.issn:0375-5444.2002.05.011

    Fu B J, Chen L D, Qiu Y, et al. Variability of the soil physical properties on the Loess Plateau[J]. Acta Grographica Sinica, 2002, 57(5): 587−594. doi: 10.3321/j.issn:0375-5444.2002.05.011
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  485
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2019-10-18
  • 网络出版日期:  2020-03-18
  • 刊出日期:  2020-03-31

目录

    /

    返回文章
    返回