高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美洲黑杨与欧洲黑杨及其杂交子代材性径向变异规律

沈浩 饶俊 关莹 张利萍 刘盛全 高慧

沈浩, 饶俊, 关莹, 张利萍, 刘盛全, 高慧. 美洲黑杨与欧洲黑杨及其杂交子代材性径向变异规律[J]. 北京林业大学学报, 2020, 42(5): 50-58. doi: 10.12171/j.1000-1522.20190352
引用本文: 沈浩, 饶俊, 关莹, 张利萍, 刘盛全, 高慧. 美洲黑杨与欧洲黑杨及其杂交子代材性径向变异规律[J]. 北京林业大学学报, 2020, 42(5): 50-58. doi: 10.12171/j.1000-1522.20190352
Shen Hao, Rao Jun, Guan Ying, Zhang Liping, Liu Shengquan, Gao Hui. Radial variation law of wood properties for Populus deltoides, Populus nigra and their hybrid progenies[J]. Journal of Beijing Forestry University, 2020, 42(5): 50-58. doi: 10.12171/j.1000-1522.20190352
Citation: Shen Hao, Rao Jun, Guan Ying, Zhang Liping, Liu Shengquan, Gao Hui. Radial variation law of wood properties for Populus deltoides, Populus nigra and their hybrid progenies[J]. Journal of Beijing Forestry University, 2020, 42(5): 50-58. doi: 10.12171/j.1000-1522.20190352

美洲黑杨与欧洲黑杨及其杂交子代材性径向变异规律

doi: 10.12171/j.1000-1522.20190352
基金项目: 国家重点研发计划课题“速生人工林木材品质性状的遗传基础”(2017YFD0600201)
详细信息
    作者简介:

    沈浩。主要研究方向:生物质材料高值化利用。Email:472707536@qq.com 地址:230036 安徽省合肥长江西路130号安徽农业大学林学与园林学院

    责任作者:

    高慧,教授。主要研究方向:生物质材料高值化利用。Email:huigaozh@163.com 地址:同上

  • 中图分类号: S792.11

Radial variation law of wood properties for Populus deltoides, Populus nigra and their hybrid progenies

  • 摘要: 目的    以母本美洲黑杨50号杨、父本欧洲黑杨N179杨及其3个杂交子代(中林46、108杨、桑巨杨)为研究对象,分析亲本和子代间木材的材性径向变异规律,为杨树材性改良提供一定的理论依据。 方法    利用国家标准测定其化学、物理及解剖特性。 结果    木材的材性测定结果表明:亲本及其3个子代的苯醇抽提物质量分数变化范围在1.36% ~ 2.15%;综纤维素为79.23% ~ 83.19%;半纤维素为35.09% ~ 35.94%;α-纤维素为43.34% ~ 47.25%;木质素为20.70% ~ 24.73%,除中林46的木质素质量分数(20.70%)低于亲本,其他子代的化学成分质量分数均介于父本与母本之间。5种杨树基本密度变化范围在0.33 ~ 0.39 g/cm 3,纤维长度为971.06 ~ 1 145.65 μm,纤维宽度为16.19 ~ 19.36 μm,纤维长宽比为57.07 ~ 67.28,壁腔比为0.26 ~ 0.31,腔径比为0.76 ~ 0.80。亲本与杂交子代材性随着树龄的增加呈现出的趋势是:苯醇抽提物含量先增加后降低;综纤维素含量在1 ~ 5年上升较快,后趋于稳定;α-纤维素含量逐渐增加;木质素含量逐渐下降;中林46中母本与子代基本密度逐渐增加,父本与另外两个子代逐渐降低;纤维长度逐渐增加,在7 ~ 8年生时,增加速度明显降低;纤维宽度逐渐增加,8年生后趋于平缓;纤维长宽比逐渐增加,7年生后增加速度变缓;壁腔比先降低后增加,在6 ~ 7年生时达到最低;腔径比先增加后降低,在6 ~ 7年生时达到最高。 结论    美洲黑杨和欧洲黑杨及杂交子代材性性状差异显著,各材性性状均呈现出不同程度的变异,亲本与子代径向变异规律一致,母本50号杨的苯醇抽提物和木质素含量低、α-纤维素含量高、纤维较长、长宽比和壁腔比大,且这些性状变异系数都较小,利于遗传控制,在5种无性系中为最佳,子代的中林46的木质素和解剖特性都具有超亲现象,选择潜力较大,在今后的育种实践中可加以利用。

     

  • 图  1  主要化学成分径向变异

    Figure  1.  Radial variations of main chemical composition

    图  2  基本密度及主要解剖特性径向变异

    Figure  2.  Radial variations of basic density and main anatomical characteristics

    表  1  树种基本信息

    Table  1.   Basic information of tree species

    类型
    Type
    无性系
    Clone
    遗传背景
    Genetic background
    表观生长
    Performance growth
    母本
    Female parent (F)
    美洲黑杨50号杨
    Populus deltoides CL. ‘55/65’
    美洲黑杨
    Populus deltoides
    早期速生、干型好、无性繁殖能力强
    Early rapid growth, trunk straight, strong asexual reproduction ability
    父本
    Male parent (M)
    欧洲黑杨N179杨
    Populus nigra CL. ‘N179’
    欧洲黑杨
    Populus nigra
    抗寒、干型好、无性繁殖能力强
    Cold resistance, trunk straight, strong asexual reproduction ability
    子代1
    Offspring 1
    中林46
    Populus euramericana cv. ‘Zhonglin46’
    杂交子代
    Hybrid F1
    育苗成活率高、适应性很强、生长速度极快
    High seedling survival rate, strong adaptability, very fast growth rate
    子代2
    Offspring 2
    108杨
    Populus euramericana cv. ‘Guariento’
    杂交子代
    Hybrid F1
    更耐寒、抗旱、抗病虫,生长快
    Cold resistance, drought resistance, disease and insect resistance, fast growth rate
    子代3
    Offspring 3
    桑巨杨
    Populus euramericana CL. ‘Sangju’
    杂交子代
    Hybrid F1
    速生、特别是中、后期速生性显著
    Rapid growth, and the property is obvious especially in the middle and late stage
    下载: 导出CSV

    表  2  亲本与子代化学成分的质量分数

    Table  2.   Mass fraction of chemical composition for parents and offsprings %

    类型
    Type
    无性系
    Clone
    苯醇抽提物
    Benzene alcohol extract
    木质素
    Lignin
    综纤维素
    Holocellulose
    α-纤维素
    α-cellulose
    半纤维素
    Hemicellulose
    母本
    Female parent (F)
    50号杨
    Populus deltoides CL. ‘55/65’
    1.36 ± 0.23 22.05 ± 2.16 83.19 ± 1.19 47.25 ± 2.55 35.94 ± 2.70
    父本
    Male parent (M)
    N179杨
    Populus nigra CL. ‘N179’
    2.15 ± 0.25 24.73 ± 1.31 79.23 ± 1.25 43.34 ± 1.28 35.90 ± 1.59
    子代1
    Offspring 1
    中林46
    Populus euramericana cv. ‘Zhonglin46’
    1.59 ± 0.19 20.70 ± 1.92 81.40 ± 1.36 45.81 ± 1.40 35.58 ± 1.72
    子代2
    Offspring 2
    108杨
    Populus euramericana cv. ‘Guariento’
    1.66 ± 0.21 24.01 ± 1.79 79.98 ± 1.99 44.89 ± 1.33 35.09 ± 1.36
    子代3
    Offspring 3
    桑巨杨
    Populus euramericana CL. ‘Sangju’
    1.59 ± 0.19 23.47 ± 1.61 80.59 ± 1.50 45.26 ± 1.86 35.33 ± 1.74
    注:表中化学成分质量分数均以绝干材为基准,数值为组内5株样本的平均值。下同。Notes: the content of chemical composition in the table is benchmarked against absolutely dry wood, and the average value of the 5 strains in the group is used as the test value. The same below.
    下载: 导出CSV

    表  3  化学成分的方差分析

    Table  3.   Variance analysis of chemical composition

    化学成分
    Chemical composition
    影响因素
    Impact factor
    离差平方和
    Sum of deviation squares
    自由度
    Degree of freedom
    均方
    Mean variance
    F显著性
    Significance
    重复力
    Repeatability
    苯醇抽提物
    Benzene-alcohol extract
    因素A Factor A 30.215 4 7.554 165.562 *** 0.68
    因素B Factor B 3.953 5 0.791 7.539 ***
    木质素
    Lignin
    因素A Factor A 938.879 4 234.720 74.034 *** 0.75
    因素B Factor B 137.481 5 27.496 5.519 ***
    α-纤维素
    α-cellulose
    因素A Factor A 729.536 4 182.384 59.407 *** 0.76
    因素B Factor B 508.600 5 101.720 28.456 ***
    综纤维素
    Holocellulose
    因素A Factor A 829.572 4 207.393 93.972 *** 0.73
    因素B Factor B 415.197 5 83.039 26.402 ***
    半纤维素
    Hemicellulose
    因素A Factor A 47.738 4 11.935 3.376 ** 0.83
    因素B Factor B 527.432 5 105.486 42.841 ***
    注:***表示在α = 0.001水平差异显著;**表示在α = 0.01水平差异显著;因素A. 无性系差异,因素B. 生长轮差异。下同。Notes: *** indicates significant difference at α = 0.001 level; ** indicates significant difference at α = 0.01 level; factor A, clonal difference; factor B, growth ring difference. The same below.
    下载: 导出CSV

    表  4  基本密度及主要解剖特性

    Table  4.   Basic density and main anatomical characteristics

    类型
    Type
    无性系
    Clone
    基本密度
    Basic density/
    (g·cm− 3)
    纤维长度
    Fiber length/
    μm
    纤维宽度
    Fiber width/
    μm
    长宽比
    Ratio of fiber length to width
    壁腔比
    Wall thickness to lumen ratio
    腔径比
    Ratio of lumen
    diameter to
    wall thickness
    母本
    Female parent (F)
    50号杨
    Populus deltoides CL. ‘55/65’
    0.39 ± 0.03 1 086.16 ± 5.48 16.19 ± 3.14 67.28 0.27 0.79
    父本
    Male parent (M)
    N179杨
    Populus nigra CL. ‘N179’
    0.33 ± 0.25 1 076.53 ± 5.55 18.59 ± 3.69 58.02 0.26 0.80
    子代1
    Offspring 1
    中林46
    Populus euramericana cv. ‘Zhonglin46’
    0.35 ± 0.28 1 103.85 ± 5.11 19.36 ± 3.88 57.07 0.31 0.76
    子代2
    Offspring 2
    108杨
    Populus euramericana cv. ‘Guariento’
    0.35 ± 0.32 1 145.65 ± 5.04 18.79 ± 3.23 61.13 0.27 0.79
    子代3
    Offspring 3
    桑巨杨
    Populus euramericana CL. ‘Sangju’
    0.35 ± 0.27 971.06 ± 2.42 16.95 ± 4.39 57.44 0.27 0.79
    下载: 导出CSV

    表  5  基本密度及解剖特性方差分析

    Table  5.   Variance analysis of basic density and anatomical characteristics

    指标
    Index
    影响因素
    Impact factor
    离差平方和
    Sum of deviation squares
    自由度
    Degree of freedom
    均方
    Mean square
    F显著性
    Significance
    基本密度
    Basic density
    因素A Factor A 0.58 4 0.15 159.77 ***
    因素B Factor B 0.01 2 0.00 1.94 **
    纤维长度
    Fiber length
    因素A Factor A 39 309 547.52 4 9 827 386.88 139.57 ***
    因素B Factor B 52 4223 200.10 9 58 247 022.23 1 853.81 ***
    纤维宽度
    Fiber width
    因素A Factor A 14 813.39 4 37 345.45 271.98 ***
    因素B Factor B 10 763.63 8 1 345.45 96.05 ***
    长宽比
    Ratio of fiber length to width
    因素A Factor A 449.16 4 122.29 2.36 ***
    因素B Factor B 1 739.93 8 217.49 12.71 ***
    壁腔比
    Wall thickness to lumen ratio
    因素A Factor A 4.08 4 1.02 101.84 ***
    因素B Factor B 6.22 8 0.78 79.16 ***
    腔径比
    Ratio of lumen diameter to wall thickness
    因素A Factor A 1.38 4 0.35 109.59 ***
    因素B Factor B 2.05 8 0.26 82.81 ***
    下载: 导出CSV

    表  6  材性性状整体变异分析

    Table  6.   Analysis on the overall variation of wood properties

    指标
    Index
    平均值
    Mean
    标准差
    Standard deviation
    变异系数
    Coefficient of variation/%
    95%置信区间
    Confidence interval at 95%
    下限
    Lower limit
    上限
    Upper limit
    苯醇抽提物 Benzene-alcohol extract1.670.3420.361.641.70
    综纤维素 Holocellulose80.882.012.4980.6981.075
    α-纤维素 α-cellulose45.312.164.7745.1145.51
    半纤维素 Hemicellulose35.571.905.3435.3935.74
    木质素 Lignin22.992.299.9622.7823.205
    基本密度 Basic density0.350.0411.40.350.35
    纤维长度 Fiber length1 077.20271.1825.171 072.441 081.96
    纤维宽度 Fiber width17.783.8821.8217.0217.85
    长宽比 Ratio of fiber length to width61.627.3211.7354.4263.82
    壁腔比 Wall thickness to lumen ratio0.280.1035.710.270.28
    腔径比 Ratio of lumen diameter to wall thickness0.790.067.60.780.79
    注:变异系数 = 标准差/均值。Note: variation coefficient = standard deviation / mean value.
    下载: 导出CSV
  • [1] 王海刚, 衡希, 吴英, 等. 我国造纸原料对外依存度的状况及对策分析[J]. 纸和造纸, 2015, 34(9):1−5.

    Wang H G, Heng X, Wu Y, et al. Situation and countermeasures of raw materials external dependence of China ’s paper industry[J]. Paper and Paper Making, 2015, 34(9): 1−5.
    [2] Szabó L, Soria A, Forsstr M J, et al. A world model of the pulp and paper industry: demand, energy consumption and emission scenarios to 2030[J]. Environmental Science & Policy, 2009, 12(3): 257−269.
    [3] 李梦丁. 中国纸浆进口贸易研究[D]. 杭州: 浙江大学, 2010.

    Li M D. Research on the pulp import of China[D]. Hangzhou: Zhejiang University, 2010.
    [4] 刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1):1−10. doi: 10.1016/j.chnaes.2017.02.003

    Liu S R, Yang Y J, Wang H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 2018, 38(1): 1−10. doi: 10.1016/j.chnaes.2017.02.003
    [5] Shui F K, Dan Q, Zhang X, et al. Changes of China’s forestry and forest products industry over the past 40 years and challenges lying ahead[J]. Forest Policy and Economics, 2019, 106: 1−12.
    [6] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10):2308−2316.

    Fang S Z. Advances in research on cultivation techniques of poplar plantations in China[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308−2316.
    [7] Balatinecz J J, Kretschmann D E, Leclercq A. Achievements in the utilization of poplar wood: guideposts for the future[J]. The Forestry Chronicle, 2001, 77(2): 265−269. doi: 10.5558/tfc77265-2
    [8] Hoenicka H, Lehnhardt D, Nilsson O, et al. Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring[J]. Plant Biotechnology Journal, 2014, 12(8): 1066−1074. doi: 10.1111/pbi.12213
    [9] Pliura A, Zhang S Y, Mackay J, et al. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials[J]. Forest Ecology and Management, 2007, 238(1): 92−106.
    [10] Martín D, Jessica S, Ballesteros M, et al. Effects of temperature on steam explosion pretreatment of poplar hybrids with different lignin contents in bioethanol production[J]. International Journal of Green Energy, 2015, 12(8): 832−842. doi: 10.1080/15435075.2014.887569
    [11] Khan Z, Rho H, Firrincieli A, et al. Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia[J]. Current Plant Biology, 2016, 6(6): 38−47.
    [12] Arshad M, Biswas K, Bisgrove S, et al. Differences in drought resistance in nine North American hybrid poplars[J]. Trees, 2019, 33(4): 1111−1128. doi: 10.1007/s00468-019-01846-1
    [13] 刘静涵, 刘宣劭, 金昊, 等. 美洲黑杨与青杨及其杂交子代的叶角度变化与解剖结构[J]. 北京林业大学学报, 2018, 40(2):11−21.

    Liu J H, Liu X S, Jin H, et al. Leaf angle change and anatomical structure of populus deltoides, P. cathayana and their hybrid F1[J]. Journal of Beijing Forestry University, 2018, 40(2): 11−21.
    [14] 赵荣军, 冯德君, 雷亚芳. 油松半同胞子代及亲本木材生长轮宽度与密度的研究[J]. 西北林学院学报, 2000, 15(3):16−19. doi: 10.3969/j.issn.1001-7461.2000.03.004

    Zhao R J, Feng D J, Lei Y F. Comparison of the wood growth ring width and basic density between the half-sib progeny and parent of Pinus tabulaeformis Carr.[J]. Journal of Northwest Forestry University, 2000, 15(3): 16−19. doi: 10.3969/j.issn.1001-7461.2000.03.004
    [15] 中国标准化管理委员会. GB/T 36055—2018造纸原料含水率的测定[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. GB/T 36055—2018 Raw material and pulp: determination of moisture content[S]. Beijing: Standards Press of China, 2018.
    [16] 中国标准化管理委员会. GB/T 35816—2018造纸原料有机溶剂抽出物含量的测定[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. GB/T 35816—2018 Raw material and pulp: determination of the content of extracts from organic solvents [S]. Beijing: Standards Press of China, 2018.
    [17] 中国标准化管理委员会. GB/T 35818—2018造纸原料木质素及综纤维素含量的测定[S]. 北京: 中国标准出版社, 2018.

    Standardization Administration of China. GB/T 35818—2018 Raw material and pulp: determination of lignin and holocellulose content [S]. Beijing: Standards Press of China, 2018.
    [18] 中国标准化管理委员会. GB/T744—1989造纸原料α-纤维素含量的测定[S]. 北京: 中国标准出版社, 1989.

    Standardization Administration of China. GB/T744—1989 Raw material and pulp: determination of α-cellulose content [S]. Beijing: Standards Press of China, 2018.
    [19] 中国标准化管理委员会. GB/T 1933—2009木材密度的测定[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of China. GB/T1933—2009 Wood-determination of density for physical and mechanical tests[S]. Beijing: Standards Press of China, 2009.
    [20] 中国标准化管理委员会. GB/T10336—1989造纸原料纤维长度的测定[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of China. GB/T10336—1989 Raw material and pulp: determination of fiber length [S]. Beijing: Standards Press of China, 1989.
    [21] Bao F C, Jiang Z H, Jiang X M, et al. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China[J]. Wood Science Technology, 2001, 35(4): 363−375. doi: 10.1007/s002260100099
    [22] Young R A. Comparison of the properties of chemical cellulose pulps[J]. Cellulose, 1994, 1(2): 107−130. doi: 10.1007/BF00819662
    [23] Zobel B J, Buijtenen J P V. Wood variation and wood properties[M]. Heidelberg: Springer Series in Wood Science,1989: 89−94.
    [24] Popova M P, Bankova V S, Bogdanov S, et al. Chemical characteristics of poplar type propolis of different geographic origin[J]. Apidologie, 2007, 38(3): 306−311. doi: 10.1051/apido:2007013
    [25] 姚春丽, 蒲俊文. 三倍体毛白杨化学组分纤维形态及制浆性能的研究[J]. 北京林业大学学报, 1998, 20(5):18−21. doi: 10.3321/j.issn:1000-1522.1998.05.004

    Yao C L, Pu J W. Timber characteristics and pulp properties of the triploid of Populus tomentosa[J]. Journal of Beijing Forestry University, 1998, 20(5): 18−21. doi: 10.3321/j.issn:1000-1522.1998.05.004
    [26] 邢善湘, 张求慧. 7个杂种毛白杨无性系幼龄材化学成分和纤维形态的研究[J]. 北京林业大学学报, 1994, 16(1):53−57.

    Xing S X, Zhang Q H. Study on the chemical components and fiber dimensions of seven poplar hybrids[J]. Journal of Beijing Forestry University, 1994, 16(1): 53−57.
    [27] 蒲俊文, 宋君龙, 姚春丽. 三倍体毛白杨化学成分径向变异的研究[J]. 造纸科学与技术, 2002, 21(3):1−3.

    Pu J W, Song J L, Yao C L. Studies on variation of chemical components of Populus tomentosa Carr. triploid clones[J]. Paper Science & Technology, 2002, 21(3): 1−3.
    [28] 周亮, 刘盛全, 高慧, 等. 欧美杨107杨树材化学成分径向变异[J]. 东北林业大学学报, 2010, 38(12):10−11, 14. doi: 10.3969/j.issn.1000-5382.2010.12.004

    Zhou L, Liu S Q, Gao H, et al. Radial variation of chemical composition of poplar clone 107[J]. Journal of Northeast Forestry University, 2010, 38(12): 10−11, 14. doi: 10.3969/j.issn.1000-5382.2010.12.004
    [29] 段安安, 张存旭, 毕春霞. 树木无性系测验中重复力估算方法的探讨[J]. 西北林学院学报, 1995, 10(3):21−24.

    Duan A A, Zhang C X, Bi C X. Research on the methods of repeatability estimation in clonal trial of trees[J]. Journal of Northwest Forestry College, 1995, 10(3): 21−24.
    [30] 杨雪梅, 陈庭巧, 赵杨. 马尾松半同胞子代林材性变异研究[J]. 西南林业大学学报(自然科学), 2018, 38(3):15−20.

    Yang X M, Chen T Q, Zhao Y. Variation within tree of wood properties in half-sib progeny of Pinus massoniana[J]. Journal of Southwest Forestry University, 2018, 38(3): 15−20.
    [31] 胡拉, 吴东山, 徐慧兰, 等. 青冈栎天然林木材的解剖特征及基本材性研究[J]. 西南林业大学学报(自然科学), 2018, 38(2):206−210.

    Hu L, Wu D S, Xu H L, et al. Wood anatomical characteristics and basic properties of Cyclobalanopsis glauca natural forest[J]. Journal of Southwest Forestry University(Natural Sciences), 2018, 38(2): 206−210.
    [32] 卢翠香, 周维, 刘媛, 等. 邓恩桉木材基本密度与解剖特性的相关性分析[J]. 广西林业科学, 2018, 47(2):126−132. doi: 10.3969/j.issn.1006-1126.2018.02.002

    Lu C X, Zhou W, Liu Y, et al. Relationship of wood basic density and anatomical properties of Eucalyptus dunnii[J]. Guangxi Forestry Science, 2018, 47(2): 126−132. doi: 10.3969/j.issn.1006-1126.2018.02.002
    [33] 肖兴翠, 杨勇智, 郭洪英, 等. 红椿天然林木材解剖性质研究[J]. 中南林业科技大学学报, 2019, 39(8):115−123.

    Xiao X C, Yang Y Z, Guo H Y, et al. Study on wood anatomical structure of natural Toona ciliate Roem. forests[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 115−123.
    [34] 王嘉楠, 查朝生, 刘盛全. 人工林杨树木材纤维形态特征及其变异的研究[J]. 安徽农业大学学报, 2006, 33(2):149−154. doi: 10.3969/j.issn.1672-352X.2006.02.002

    Wang J N, Zha C S, Liu S Q. Fiber morphological features and variation of plantation poplar[J]. Journal of Anhui Agricultural University, 2006, 33(2): 149−154. doi: 10.3969/j.issn.1672-352X.2006.02.002
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  555
  • HTML全文浏览量:  246
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-11-19
  • 网络出版日期:  2020-04-18
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回