高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核桃缘吉丁成虫的取食选择行为及机制

崔亚琴 宗世祥

崔亚琴, 宗世祥. 核桃缘吉丁成虫的取食选择行为及机制[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210172
引用本文: 崔亚琴, 宗世祥. 核桃缘吉丁成虫的取食选择行为及机制[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210172
Cui Yaqin, Zong Shixiang. Feeding choice behavior and mechanism of adult Meliboeus ohbayashii primoriensis[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210172
Citation: Cui Yaqin, Zong Shixiang. Feeding choice behavior and mechanism of adult Meliboeus ohbayashii primoriensis[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210172

核桃缘吉丁成虫的取食选择行为及机制

doi: 10.12171/j.1000-1522.20210172
基金项目: 山西省青年科技研究基金项目(201901D211555)
详细信息
    作者简介:

    崔亚琴,博士,高级工程师。主要研究方向:森林病虫害监测与防控。Email:sxtycyq@foxmail.com 地址:030012 山西省太原市迎泽区新建南路105号山西省林业和草原科学研究院

    责任作者:

    宗世祥,教授,博士生导师。主要研究方向:林木钻蛀性害虫监测预警与生态调控技术。Email:zongsx@126.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

  • 中图分类号: S763.3

Feeding choice behavior and mechanism of adult Meliboeus ohbayashii primoriensis

  • 摘要:   目的  通过比较核桃缘吉丁成虫对核桃、苹果和山楂这3种植物在取食选择和取食量上的差异,并分析植物挥发物的组成与含量,该研究为进一步开发核桃缘吉丁植物源引诱剂提供了依据。  方法  测定核桃缘吉丁成虫对核桃、苹果和山楂叶片的取食选择和取食量,采用动态顶空法收集这3种植物的枝叶挥发物组分及相对含量的测定,通过卡方检验分析比较核桃缘吉丁对植物挥发物的行为反应。  结果  核桃缘吉丁成虫对不同植物的取食选择和取食量存在显著差异,成虫对核桃的取食选择性最高且取食核桃叶片,对苹果和山楂的选择性较低,且存在不取食现象。从核桃、苹果和山楂的枝叶挥发物中,共收集到45种植物挥发性化合物,包括烷烃类5种、酯类8种、芳香烃类3种、萜类18种、醛类2种、醇类4种和酮类5种。在行为反应测定中,莰烯对核桃缘吉丁雌雄成虫均具有明显的趋向反应,而乙酸冰片酯、癸醛和桉叶油醇这3种单体化合物仅对雄虫具有一定的引诱效果。  结论  核桃可作为核桃缘吉丁成虫补充营养的寄主植物,该成虫不取食苹果和山楂。莰烯、乙酸冰片酯、癸醛和桉叶油醇对核桃缘吉丁成虫具有一定的吸引效果,需要重点关注,这些枝叶挥发物成分在核桃缘吉丁成虫寄主植物识别与选择的阶段中可能发挥着重要作用。

     

  • 图  1  核桃缘吉丁成虫在3种植物叶片上的着落数量

    不同小写字母表示不同植物间存在极显著差异(P < 0.001),χ2 = 81.750,df = 2,渐进显著性 = 0.000。Different lowercases indicate highly significant differences between plants (P < 0.001), χ2 = 81.750, df = 2, Asymp. Sig. = 0.000.

    Figure  1.  Number of Meliboeus ohbayashii primoriensis adults observed on foliage of three plants

    图  2  3种植物叶片面积与质量间的线性关系

    Figure  2.  Regression of leaf area and leaf mass among three plants

    图  3  无竞争条件下核桃缘吉丁成虫(雌虫和雄虫)对3种植物叶片的取食面积和质量

    不同小写字母表示不同植物间存在极显著差异(P < 0.001),χ2 = 16.129,df = 2,渐进显著性 = 0.000。Different lowercases indicate highly significant differences between plants (P < 0.001), χ2= 16.129, df = 2, Asymp. Sig. = 0.000.

    Figure  3.  Leaf area and leaf mass consumed by M. ohbayashii primoriensis adults (female and male) on three plants under non-choice conditions

    图  4  两项选择条件下核桃缘吉丁成虫(雌虫A和雄虫B)对3种植物叶片的取食面积

    *表示不同植物间存在显著差异(P < 0.05),Z = −2.201,渐进显著性(双侧) = 0.028。下同。* indicates significant differences between plants (P < 0.05), Z = −2.201, Asymp.Sig. (2-tailed) = 0.028. The same below.

    Figure  4.  Leaf area consumed by female M. ohbayashii primoriensis adults (female A and male B) on three plants under two-choice conditions

    图  5  两项选择条件下核桃缘吉丁成虫(雌虫A和雄虫B)对3种植物叶片的取食质量

    Figure  5.  Leaf mass consumed by female M. ohbayashii primoriensis adults (female A and male B) on three plants under two-choice conditions

    图  6  核桃缘吉丁成虫(雌虫A和雄虫B)对植物挥发物的行为反应

    *表示不同植物挥发物与对照之间存在显著差异(P < 0.05)。* indicates significant differences between plant volatiles and control (P < 0.05).

    Figure  6.  Behavioral responses of Meliboeus ohbayashii primoriensis adults (female A and male B) to plant volatiles

    表  1  3种植物枝叶的主要挥发物成分及相对含量

    Table  1.   Composition and relative contents of main volatile released from the branch and foliage of three plants

    种类 Type 植物挥发物 Volatile 相对含量 Relative content/%
    核桃 J. regia苹果 M. pumila山楂 C. pinnatifida
    烷烃类 Alkanes 十二烷 Dodecane 0.20 ± 0.03 0.10 ± 0.06
    十四烷 Tetradecane 0.07 ± 0.01 0.18 ± 0.02 0.11 ± 0.04
    十五烷 Pentadecane 0.11 ± 0.03 0.17 ± 0.04 0.10 ± 0.03
    十六烷 Hexadecane 0.08 ± 0.25
    十七烷 Heptadecane 0.11 ± 0.02 0.09 ± 0.01
    酯类 Esters 碳酸二乙酯 Diethyl carbonate 0.58 ± 0.07 1.36 ± 0.70
    甲酸叶醇酯 cis-3-hexenyl formate 1.43 ± 0.11 3.42 ± 0.40
    乙酸叶醇酯 Leaf acetate 5.37 ± 0.45 9.92 ± 3.17
    丙烯酸异辛酯 2-ethylhexyl acrylate 1.53 ± 0.17 7.40 ± 1.48 4.60 ± 1.95
    乙酸冰片酯 Bornyl acetate 0.39 ± 0.11
    异戊酸香叶基酯 Geranyl isovalerate 0.52 ± 0.09
    苯乙酸叶醇酯 (Z)-Hex-3-enyl phenylacetate 1.17 ± 0.21
    棕榈酸甲酯 Methyl hexadecanoate 0.80 ± 0.05
    芳香烃类 Aromatic hydrocarbons 邻二甲苯 o-xylene 0.21 ± 0.04
    精萘 Naphthalene 0.77 ± 0.34 2.48 ± 0.34
    1,6-己内酰胺 1, 6-caprolactams 2.28 ± 0.30
    萜类 Terpenes α-蒎烯 α-pinene 23.43 ± 0.76 10.62 ± 0.10 14.12 ± 1.38
    莰烯 Camphene 0.34 ± 0.10
    桧稀 Sabenene 1.90 ± 0.38
    月桂烯 β-myrcene 1.39 ± 0.17
    β-蒎烯 β-pinene 2.81 ± 0.26
    樟脑 (+)-2-bornanone 3.84 ± 0.43
    右旋萜二烯 D-limonene 9.15 ± 0.09
    长叶环烯 Longicyclene 0.63 ± 0.13 2.30 ± 0.43 2.57 ± 0.82
    β-波旁烯 (-)-β-bourbonene 2.64 ± 0.38
    榄香烯 (-)-b-elemene 0.63 ± 0.19
    长叶烯 Longifolene 1.24 ± 0.16 10.41 ± 0.22 7.42 ± 1.23
    β-石竹烯 β-caryophyllen 6.70 ± 0.43 3.76 ± 0.12 0.73 ± 0.18
    (E)-β-金合欢烯 (E)-β-farnesene 11.89 ± 0.89
    大根香叶烯 Germacrene D 1.26 ± 0.37
    α-法尼烯 (E,E)-α-farnesene 5.27 ± 1.42 5.54 ± 1.55
    法尼醇 Farnesanol 0.79 ± 0.07
    反式角鲨烯 Squalene 0.85 ± 0.14 1.89 ± 1.01
    氧化石竹烯 (-)-Caryophyllene oxide 1.93 ± 0.35
    醛类 Aldehydes 壬醛 1-nonmanal 1.33 ± 0.34 5.44 ± 0.56 3.99 ± 1.48
    癸醛 Decanal 0.42 ± 0.09 2.87 ± 0.94 2.97 ± 0.86
    醇类 Alcohols 桉叶油醇 Eucalyptol 6.42 ± 1.05
    2-乙基己醇 2-ethylhexanol 11.91 ± 1.19 16.93 ± 3.11
    4-萜烯醇 Terpinen-4-ol 0.28 ± 0.09 1.51 ± 0.39 1.37 ± 0.34
    alpha-松油醇 alpha-terpineol 2.17 ± 0.29
    酮类 Ketones 松香芹酮 Pinocarvone 1.15 ± 0.11
    反式松莰酮 (E)-pinocamphone 0.30 ± 0.07
    香叶基丙酮 Geranylacetone 14.99 ± 1.89
    对乙基苯乙酮 Ethylacetophenone 1.90 ± 0.21
    异佛尔酮 Isophorone 12.28 ± 2.11
    下载: 导出CSV
  • [1] 王小艺, 曹亮明, 杨忠岐. 我国五种重要吉丁虫学名订正及再描述(鞘翅目: 吉丁甲科)[J]. 昆虫学报, 2018, 61(10):1202−1211.

    Wang X Y, Cao L M, Yang Z Q. Revision of scientific names and re-description of five important buprestid species (Coleoptera: Buprestidae) in China[J]. Acta Entomologica Sinica, 2018, 61(10): 1202−1211.
    [2] 师光禄, 刘贤谦. 中国核桃害虫[M]. 北京: 中国农业科技出版社, 1996: 72−74.

    Shi G L, Liu X Q. Chinese walnut pests[M]. Beijing: China Agricultural Science and Technology Press, 1996: 72−74.
    [3] 王瑞, 李青森. 山西省核桃害虫及防治对策[J]. 山西大学学报(自然科学版), 1993, 16(1):107−111.

    Wang R, Li Q S. Walnut insect pests of Shanxi and their countermeasure control[J]. Journal of Shanxi University (Nat Sci Ed), 1993, 16(1): 107−111.
    [4] 王奎, 刘丽君, 蔡卫东. 我国核桃虫害研究综述[J]. 绿色科技, 2015(4):68−73. doi: 10.3969/j.issn.1674-9944.2015.04.030

    Wang K, Liu L J, Cai W D. Summary of related research on insect attack of walnut in China[J]. Journal of Green Science and Technology, 2015(4): 68−73. doi: 10.3969/j.issn.1674-9944.2015.04.030
    [5] 王爱华. 翼城县核桃黑小吉丁虫综合防治技术初探[J]. 山西林业, 2014(4):47−48. doi: 10.3969/j.issn.1005-4707.2014.04.026

    Wang A H. A preliminary study on the comprehensive control technology of walnut black beetle in Yicheng county[J]. Forestry of Shanxi, 2014(4): 47−48. doi: 10.3969/j.issn.1005-4707.2014.04.026
    [6] 刘永善, 刘少庆. 核桃黑小吉丁虫生物学特性及防治技术[J]. 现代农村科技, 2010(24):18. doi: 10.3969/j.issn.1674-5329.2010.24.017

    Liu Y S, Liu S Q. Biological characteristics and control techniques of walnut black beetle[J]. Xiandai Nongcun Keji, 2010(24): 18. doi: 10.3969/j.issn.1674-5329.2010.24.017
    [7] 陈川, 李兴权, 杨美霞, 等. 陕西省核桃害虫种类调查及主要害虫的防治技术[J]. 农学学报, 2015, 5(9):64−68. doi: 10.11923/j.issn.2095-4050.casb14110052

    Chen C, Li X Q, Yang M X, et al. Investigation of pests and control technologies of major pests of Juglans regia in Shaanxi[J]. Journal of Agriculture, 2015, 5(9): 64−68. doi: 10.11923/j.issn.2095-4050.casb14110052
    [8] Cui Y Q, Kong S Q, Liu X H, et al. Comparison of the volatiles composition between healthy and buprestid infected Juglans regia (Juglandaceae)[J]. Revista Colombiana de Entomología, 2020, 46(1): 1−5.
    [9] Reinecke A, Ruther J, Mayer C J, et al. Optimized trap lure for male Melolontha cockchafers[J]. Journal of Applied Entomology, 2006, 130(3): 171−176. doi: 10.1111/j.1439-0418.2006.01041.x
    [10] Crook D J, Khrimian A, Francese J A, et al. Development of a host-based semiochemical lure for trapping emerald ash borer Agrilus planipennis (Coleoptera: Buprestidae)[J]. Environmental Entomology, 2008, 37: 356−365. doi: 10.1093/ee/37.2.356
    [11] 尹姣, 薛银根, 乔红波, 等. 粘虫(Mythimna separata Walker)选择产卵场所的意义及颜色在定位中的作用[J]. 生态学报, 2007, 27(6):2483−2489. doi: 10.3321/j.issn:1000-0933.2007.06.042

    Yin J, Xue Y G, Qiao H B, et al. The significance of oviposition site selection and effect of color in orientation by oriental army worm, Mythimna separata Walker[J]. Acta Ecologica Sinica, 2007, 27(6): 2483−2489. doi: 10.3321/j.issn:1000-0933.2007.06.042
    [12] Rudinsky J A. Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests[J]. The Canadian Entomologist, 1966, 98(1): 98−111. doi: 10.4039/Ent9898-1
    [13] Pureswaran D S, Poland T M. Host selection and feeding preference of Agrilus planipennis (Coleoptera: Buprestidae) on ash (Fraxinus spp.)[J]. Environmental Entomology, 2009, 38(3): 757−765. doi: 10.1603/022.038.0328
    [14] Ikeda T, Oda K, Yamane A, et al. Volatiles from pine logs as the attractant for the Japanese pine sawyer Monochamus alternatus (Coleopetra: Cerambycidea)[J]. Journal of the Japanese Forestry Society, 1980, 62(4): 150−152.
    [15] 崔晓宁. 苹果小吉丁虫对寄主植物挥发物的行为反应及嗅觉相关基因功能研究 [D]. 杨凌: 西北农林科技大学, 2018.

    Cui X N. Behavioral responses of Agrilus mali to host-plant volatiles and function of related olfactory genes[D]. Yangling: Northwest A&F University, 2018.
    [16] Fan J T, Sun J H. Influences of host volatiles on feeding behavior of the Japanese pine sawyer, Monochamus alternatus[J]. Journal of Applied Entomology, 2006, 130(4): 238−244. doi: 10.1111/j.1439-0418.2006.01045.x
    [17] 袁丽芳, 谢寿安, 刘绥鹏, 等. 花椒窄吉丁对寄主挥发物的触角电位及行为反应[J]. 西北农林科技大学学报(自然科学版), 2017, 45(2):111−120.

    Yuan L F, Xie S A, Liu S P, et al. Electroantennogram and behavioural responses of Agrilus zanthoxylumi to volatiles form Zanthoxylum bungeanum[J]. Journal of Northwest A&F University (Nat Sci Ed), 2017, 45(2): 111−120.
    [18] 崔晓宁, 伊志豪, 王明, 等. 苹小吉丁成虫补充营养的偏好性及相关植物挥发物分析[J]. 林业科学, 2016, 52(11):96−106. doi: 10.11707/j.1001-7488.20161112

    Cui X N, Yi Z H, Wang M, et al. Maturation feeding preference of adult Agrilus mali and related host plant leaf volatiles[J]. Scientia Silvae Sinicae, 2016, 52(11): 96−106. doi: 10.11707/j.1001-7488.20161112
    [19] Jang T, Rho M S, Koh S H, et al. Host-plant quality alters herbivore responses to temperature: a case study using the generalist Hyphantria cunea[J]. Entomologia Experimentlis et Applicata, 2015, 154(2): 120−130. doi: 10.1111/eea.12261
    [20] Suwarno S, Salmah M R C, Arshad A, et al. Oviposition preference and nutritional indices of Papilio polytes L. (Papilionidae) larvae on four rutaceous (Sapindales: Rutaceae) host plants[J]. Journal of the Lepidopterists Society, 2010, 64(4): 203−210. doi: 10.18473/lepi.v64i4.a5
    [21] Togola A, Boukar O, Belko N, et al. Host plant resistance to insect pests of cowpea (Vigna unguiculata L. Walp.): achievements and future prospects[J]. Euphytica, 2017, 213(11): 213−239.
    [22] 卓志航, 杨伟, 徐丹萍, 等. 云斑天牛寄主核桃树皮及树叶的挥发性成分[J]. 西北农林科技大学学报(自然科学版), 2016, 44(5):205−241.

    Zhou Z H, Yang W, Xu D P, et al. Volatile components in bark and leaf of host plant Juglans regia L. of Batocera lineolate Chevrolat[J]. Journal of Northwest A&F University (Nat Sci Ed), 2016, 44(5): 205−241.
    [23] 刘亚敏, 胥耀平, 高锦明, 等. GC/MS法分析核桃叶挥发油化学成分[J]. 西北植物学报, 2004, 24(6):1100−1102. doi: 10.3321/j.issn:1000-4025.2004.06.027

    Liu Y M, Xu Y P, Gao J M, et al. Analysis of volatile components from leaves of Juglans regia by GC/MS[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(6): 1100−1102. doi: 10.3321/j.issn:1000-4025.2004.06.027
    [24] 李欣, 白素芬. 寄主植物-植食性昆虫-天敌三重营养关系中化学生态学的研究进展[J]. 河南农业大学学报, 2003, 37(3):224−232. doi: 10.3969/j.issn.1000-2340.2003.03.006

    Li X, Bai S F. Advances in the studies on the chemical ecology of tritrophic interactions among host-plant, herbivore and natural enemies[J]. Journal of Henan Agricultural University, 2003, 37(3): 224−232. doi: 10.3969/j.issn.1000-2340.2003.03.006
    [25] 蔡晓明, 李兆群, 潘洪生, 等. 植食性害虫食诱剂的研究与应用[J]. 中国生物防治学报, 2018, 34(1):8−35.

    Cai X M, Li Z Q, Pan H S, et al. Research and application of food-based attractants of herbivorous insect pests[J]. Chinese Journal of Biological Control, 2018, 34(1): 8−35.
    [26] Wohlers P, Tjallingii W F. Electroantennogram responses of aphids to the alarm pheromone (E)-β-farnesene[J]. Entomologia Experimentalis et Applicata, 1983, 33(1): 79−82.
    [27] 王焱. 松墨天牛引诱剂和松材线虫分子检测技术研究[D]. 南京: 南京林业大学, 2008.

    Wang Y. Monochamus alternatus attractant and molecular detection technique of Bursaphelenchus xylophilus[D]. Nanjing: Nanjing Forestry University, 2008.
    [28] 王紫薇. 光肩星天牛对海防林中五种植物寄主选择的行为研究[D]. 杭州: 浙江农林大学, 2016.

    Wang Z W. The study of behavior the host selection of Anoplophora glabripennis to five kinds of plants[D]. Hangzhou: Zhejiang A&F University, 2016.
    [29] Kessler A, Baldwin T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291: 2141−2144. doi: 10.1126/science.291.5511.2141
    [30] 刘燕, 谢冬生, 熊焰, 等. 庚醛与桉叶油醇组合对马铃薯块茎蛾产卵选择的影响[J]. 植物保护, 2016, 42(3):99−103. doi: 10.3969/j.issn.0529-1542.2016.03.016

    Liu Y, Xie D S, Xiong Y, et al. Effects of combination of cineole with heptanal on oviposition choices of the potato tuber moth, Phthorimaea operculella[J]. Plant Protection, 2016, 42(3): 99−103. doi: 10.3969/j.issn.0529-1542.2016.03.016
    [31] Hammack L. Attractiveness of synthetic corn volatiles to feral northern and western corn rootworm beetles (Coleoptera: Chrysomelidae)[J]. Environmental Entomology, 1997, 26(2): 311−317. doi: 10.1093/ee/26.2.311
    [32] Hardie J, Isaacs R, Pickett J A, et al. Methyl salicylate and (-)-(1R, 5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop (Homoptera: Aphididae)[J]. Journal of Chemical Ecology, 1994, 20(11): 2847−2855. doi: 10.1007/BF02098393
    [33] James D G. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing, Chrysopa nigricornis[J]. Journal of Chemical Ecology, 2003, 29(7): 1601−1609. doi: 10.1023/A:1024270713493
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  52
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-07-07
  • 网络出版日期:  2021-08-24

目录

    /

    返回文章
    返回