高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异

邹青勤 王奕淞 蒋治岩 陈祥伟 王秀伟

邹青勤, 王奕淞, 蒋治岩, 陈祥伟, 王秀伟. 典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210233
引用本文: 邹青勤, 王奕淞, 蒋治岩, 陈祥伟, 王秀伟. 典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20210233
Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210233
Citation: Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20210233

典型黑土区不同水土保持树种的非结构性碳水化合物特征及种间差异

doi: 10.12171/j.1000-1522.20210233
基金项目: 国家重点研发计划课题(2018YFC0507003);黑龙江省应用技术研究与开发计划项目(GA20B401);中央高校基本科研业务费专项(2572019BA15,2572020DR02)
详细信息
    作者简介:

    邹青勤。主要研究方向:植物生理生态学。Email:ojrk@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    王秀伟,副教授,博士生导师。主要研究方向:植物生理生态学。Email:wxgreat@nefu.edu.cn 地址:同上

Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region

  • 摘要:   目的  探究典型黑土区主要水土保持树种的非结构性碳水化合物(NSC)在器官水平的分配规律及其种间差异,以期为水土保持植物的科学选择与培育提供理论依据。  方法  选取典型黑土区5种水土保持树种(小叶锦鸡儿、榆叶梅、白桦、糖槭和红皮云杉)作为研究对象,采集植物叶片、枝条、干材、树皮及树根,测定并比较各器官可溶性糖、淀粉及总NSC的浓度。  结果  (1)NSC浓度在树种和器官之间均差异显著(P < 0.05)。5种树种中叶和根的NSC浓度较高,树干中可溶性糖浓度最低,根中淀粉浓度最高,叶片中浓度最低。红皮云杉叶和枝的可溶性糖浓度显著高于其他树种,糖槭干和根淀粉浓度和NSC显著高于其他树种。(2)不同生活型树种的NSC及其组分的浓度和分配也有明显差异,乔木叶片的可溶性糖和NSC浓度高于灌木,乔木淀粉浓度均表现为落叶树种大于常绿树种。(3)红皮云杉将更多的NSC分配到地上部分,榆叶梅将更多的NSC分配到地下部分。(4)落叶灌木将大多数的NSC分配到细根和中根上,乔木(红皮云杉)选择将细根作为根系储存NSC的主要组织。  结论  可溶性糖和淀粉在各器官中分配不同,叶和根分别是非结构性碳水化合物的合成与储存结构,乔木树的NSC分配利于叶片碳同化和光合作用。在5种树种中,红皮云杉、榆叶梅和糖槭均具有抗旱性,此外,红皮云杉还具有良好的耐寒性,可以更好地适应低温干旱的生长环境,因此红皮云杉、榆叶梅和糖槭是研究区域适应能力相对较强的水土保持树种。

     

  • 图  1  5种树种各器官的非结构碳水化合物及其组分浓度

    CM,小叶锦鸡儿;AT,榆叶梅;BP,白桦;AN,糖槭;PK,红皮云杉。不同字母代表相同器官不同树种之间有差异(P < 0.05)。下同。CM, Caragana microphylla; AT, Amygdalus triloba; BP, Betula platyphylla; AN, Acer negundo; PK, Picea koraiensis. Different letters represent differences in the organs of tree species (P < 0.05). Same as below.

    Figure  1.  Concentrations of NSC and its components in the organs of the five tree species

    图  2  5种树种根系内的非结构碳水化合物及其组分浓度

    Figure  2.  Concentrations of NSC and its components in the roots of the five tree species

    图  3  5种树种各器官的非结构碳水化合物及其组分的分配

    Figure  3.  Allocation of NSC and its components in the organs of the five tree species

    表  1  5种水土保持树种基本信息

    Table  1.   The basic information of five species of soil and water conservation

    树种
    Species
    代码
    Code
    生活型
    Life form
    平均冠幅
    Average crown breadth/cm
    平均树高
    Average
    height/cm
    平均地径
    Average
    ground
    diameter/cm
    树龄
    Tree-age/a
    备注
    Notes
    南北
    North and South
    东西
    East and West
    小叶锦鸡儿 Caragana microphylla CM 落叶灌木
    Deciduous shrubs
    114.3 88.3 228.6 3.6 7 单株 Single plant
    榆叶梅 Amygdalus triloba AT 97.8 91.0 143.7 15.5 8 丛生 Clump
    白桦 Betula platyphylla BP 落叶乔木
    Deciduous trees
    52.0 52.0 329.0 4.7 7 单株 Single plant
    糖槭 Acer negundo AN 89.3 118.3 338.3 4.4 8 单株 Single plant
    红皮云杉 Picea koraiensis PK 常绿乔木
    Evergreen trees
    66.7 60.0 79.5 3.1 8 单株 Single plant
    下载: 导出CSV

    表  2  5种树种的非结构碳水化合物及其组分浓度的双因素方差分析

    Table  2.   Two-Factor ANOVA on concentration of non-structural carbohydrate and its components for five species

    非结构性碳水化合物组分
    Non-structural carbohydrate (NSC) component
    变异来源
    Source of variation
    dfFP
    可溶性糖 Soluble sugar 树种 Species 4 20.1 < 0.01
    器官 Organ 4 63.9 < 0.01
    树种 × 器官 Species × Organ 16 10.8 < 0.01
    淀粉 Starch 树种 Species 4 96.4 < 0.01
    器官 Organ 4 172.2 < 0.01
    树种 × 器官 Species × Organ 16 25.7 < 0.01
    总量 Total 树种 Species 4 11.6 < 0.01
    器官 Organ 4 139.5 < 0.01
    树种 × 器官 Species × Organ 16 21.3 < 0.01
    下载: 导出CSV
  • [1] 印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009, 45(3):519−527.

    Yin J J, Guo D L, He S Y, et al. Non-structural carbohydrate, N, and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519−527.
    [2] Kozlowski T T. Carbohydrate sources and sinks in woody plants[J]. The Botanical Review, 1992, 58(2): 107−222. doi: 10.1007/BF02858600
    [3] Chapin F. The ecology and economics of storage in plants[J]. Annual Review of Ecology and Systematics, 1990, 21(1): 423−447. doi: 10.1146/annurev.es.21.110190.002231
    [4] Poorter L, Kitajima K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species[J]. Ecology, 2007, 88(4): 1000−1011. doi: 10.1890/06-0984
    [5] Würth M K R, Peláez-riedl S, Wright S J, et al. Non-structural carbohydrate pools in a tropical forest[J]. Oecologia, 2005, 143(1): 11−24. doi: 10.1007/s00442-004-1773-2
    [6] 李蟠, 孙玉芳, 王三根, 等. 贡嘎山地区不同海拔冷杉比叶质量和非结构性碳水化合物含量变化[J]. 应用生态学报, 2008, 19(1):8−12.

    Li P, Sun Y F, Wang S G, et al. Altitudinal changes in leaf mass per unit area and tissue non-structural carbohydrates content of Abies fabri on Gongga Mountain of Southwest China[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 8−12.
    [7] 潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002(1):30−38.

    Pan Q M, Han X G, Bai Y F, et al. Research progress on the physiological ecology of non-structural storage carbohydrates in plants[J]. Chinese Bulletin of Botany, 2002(1): 30−38.
    [8] Bansal S, Germino MJ. Temporal variation of nonstructural carbohydrates in montane conifers: similarities and differences among developmental stages, species and environmental conditions[J]. Tree Physiology, 2009, 29(4): 559−568. doi: 10.1093/treephys/tpn045
    [9] Palacio S, Millard P, Maestro M, et al. Non-structural carbohydrates and nitrogen dynamics in Mediterranean sub-shrubs: an analysis of the functional role of overwintering leaves[J]. Plant Biology, 2007, 9(1): 49−58. doi: 10.1055/s-2006-924224
    [10] Loewe A, Einig W, Shi L, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen[J]. New Phytologist, 2000, 145(3): 565−574. doi: 10.1046/j.1469-8137.2000.00598.x
    [11] Xu X Z, Xu Y, Chen S C, et al. Soil loss and conservation in the black soil region of Northeast China: a retrospective study[J]. Environmental Science and Policy, 2010, 13(8): 793−800. doi: 10.1016/j.envsci.2010.07.004
    [12] 景国臣, 鞠敏睿, 欧阳力. 黑土区几种人工林的水土保持效果分析[J]. 水利科学与寒区工程, 2019, 2(5):42−47. doi: 10.3969/j.issn.1002-3305.2019.05.009

    Jing G C, Ju M R, Ou Y L. Analysis of soil and water conservation effect of several kinds of plantations in black soil area[J]. Hydro Science and Cold Zone Engineering, 2019, 2(5): 42−47. doi: 10.3969/j.issn.1002-3305.2019.05.009
    [13] 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12):1245−1255. doi: 10.3724/SP.J.1258.2011.01245

    Yu L M, Wang C K, Wang X C. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China[J]. Chinese Journal of Plant Ecology, 2011, 35(12): 1245−1255. doi: 10.3724/SP.J.1258.2011.01245
    [14] 郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4):1188−1196.

    Zheng Y P, Wang H X, Lou X, et al. Changes of non-structural carbohydrates and its impact factors in trees: A review[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1188−1196.
    [15] Nguyen P V, Dickmann D I, Pregitzer K S, et al. Late-season changes in allocation of starch and sugar to shoots, coarse roots, and fine roots in two hybrid poplar clones[J]. Tree Physiology, 1990, 7(1−2−3−4): 95−105. doi: 10.1093/treephys/7.1-2-3-4.95
    [16] 王凯, 宋琪, 张日升, 等. 科尔沁沙地防护林主要树种的非结构性碳水化合物分布特征[J]. 林业科学, 2020, 56(12):39−48. doi: 10.11707/j.1001-7488.20201205

    Wang K, Song Q, Zhang R S, et al. Distribution characteristics of non-Structural carbohydrate in main tree species of shelterbelt forests in Horqin Sandy Land[J]. Scientia Silvae Sinicae, 2020, 56(12): 39−48. doi: 10.11707/j.1001-7488.20201205
    [17] Latt C R, Nair P, Kang B T. Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate[J]. Forest Ecology and Management, 2001, 146(1−3): 145−158. doi: 10.1016/S0378-1127(00)00456-4
    [18] 李贝贝, 薛晶, 季晓慧, 等. 8种彩叶树在克山农场引种栽培试验[J]. 防护林科技, 2020(8):36−37, 47.

    Li B B, Xue J, Ji X H, et al. Introduction and cultivation test of eight species of colorful trees in Keshan Farm[J]. Protection Forest Science and Technology, 2020(8): 36−37, 47.
    [19] Hoch G, Popp M, Krner C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline[J]. Oikos, 2002, 98(3): 361−374. doi: 10.1034/j.1600-0706.2002.980301.x
    [20] Jan B, Roel M. An improved colorimetric method to quantify sugar content of plant tissue[J]. Journal of Experimental Botany, 1993, 44(10): 1627−1629. doi: 10.1093/jxb/44.10.1627
    [21] 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析[J]. 林业科学, 2017, 53(6):1−9. doi: 10.11707/j.1001-7488.20170601

    Liu W D, Su J R, Li S F, et al. Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu'Er, Yunnan Province[J]. Scientia Silvae Sinicae, 2017, 53(6): 1−9. doi: 10.11707/j.1001-7488.20170601
    [22] Eissenstat D M, Yanair D. The ecology of root lifespan[J]. Advances in Ecological Research, 1997, 27: 1−60.
    [23] Sala A, Mencuccini M. Plump trees win under drought[J]. Nature Climate Change, 2014, 4(8): 666−667. doi: 10.1038/nclimate2329
    [24] 张海燕, 王传宽, 王兴昌, 等. 白桦和紫椴树干非结构性碳水化合物的空间变异[J]. 应用生态学报, 2013, 24(11):3050−3056.

    Zhang H Y, Wang C K, Wang X C, et al. Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3050−3056.
    [25] He W, Liu H, Qi Y, et al. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration[J]. Global Change Biology, 2020, 26(6): 3627−3638. doi: 10.1111/gcb.15078
    [26] Loescher W H, Mccamant T, Keller J D. Carbohydrate reserves, translocation, and storage in woody plant roots[J]. HortScience, 1990, 25(3): 274−281. doi: 10.21273/HORTSCI.25.3.274
    [27] Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know[J]. New Phytologist, 2016, 211(2): 386−403. doi: 10.1111/nph.13955
    [28] Gaucher C, Gougeon S, Mauffette Y, et al. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings[J]. Tree physiology, 2005, 25(1): 93−100. doi: 10.1093/treephys/25.1.93
    [29] 欧阳明, 杨清培, 祁红艳, 等. 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较[J]. 南京林业大学学报(自然科学版), 2014, 38(2):105−110.

    Ou Y M, Yang Q P, Qi H Y, et al. A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2): 105−110.
    [30] 李娜妮, 何念鹏, 于贵瑞. 中国东北典型森林生态系统植物叶片的非结构性碳水化合物研究[J]. 生态学报, 2016, 36(2):430−438.

    Li N N, He N P, Yu G R. Evaluation of leaf non-structural carbohydrate contents in typical forest ecosystems in Northeast China[J]. Acta Ecologica Sinica, 2016, 36(2): 430−438.
    [31] 赵东辉, 高玉福, 刘继生, 等. 两种观赏槭树秋季叶片色素和可溶性糖含量的变化[J]. 延边大学农学学报, 2018, 40(4):32−37.

    Zhao D H, Gao Y F, Liu J S, et al. Changes of pigment and soluble sugar contents in autumn leaves of two ornamental maples[J]. Agricultural Science Journal of Yanbian University, 2018, 40(4): 32−37.
    [32] 马玥, 苏宝玲, 韩艳刚, 等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应[J]. 应用生态学报, 2021, 32(2):513−520.

    Ma Y, Su B L, Han Y G, et al. Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 513−520.
    [33] 上官淮亮, 刘鸿雁, 胡国铮, 等. 干旱林线区不同树种非结构性碳水化合物的季节格局及其主导因子[J]. 北京大学学报(自然科学版), 2019, 55(3):553−560.

    Shangguan H L, Liu H Y, Hu G Z, et al. Seasonal patterns and their determinants of non-structural carbohydrates in different tree species at xeric timberline[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(3): 553−560.
    [34] 王凯, 宋立宁, 吕林有, 等. 科尔沁沙地主要造林树种细根适应策略[J]. 干旱区资源与环境, 2014, 28(12):128−131.

    Wang K, Song L N, Lv L Y, et al. Fine root adaptive strategy of main afforestation tree species in Horqin sandy land[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 128−131.
    [35] Gibson S I. Plant sugar-response pathways. Part of a complex regulatory web[J]. Plant Physiology, 2000, 124(4): 1532−1539. doi: 10.1104/pp.124.4.1532
    [36] 张海燕, 王传宽, 王兴昌. 温带12个树种新老树枝非结构性碳水化合物浓度比较[J]. 生态学报, 2013, 33(18):5675−5685. doi: 10.5846/stxb201304210762

    Zhang H Y, Wang C K, Wang X C. Comparison of concentrations of non-structural carbohydrates between new twigs and old branches for 12 temperate species[J]. Acta Ecologica Sinica, 2013, 33(18): 5675−5685. doi: 10.5846/stxb201304210762
    [37] 赵镭, 杨海波, 王达力, 等. 浙江天童常见种幼苗的光合特性及非结构性碳水化合物储存[J]. 华东师范大学学报: 自然科学版, 2011(4):35−44.

    Zhao L, Yang H B, Wang D L, et al. Seedlings photosynthesis traits and non-structural carbohydrate storage of common species in Tianton National Forest Park, Zhejiang Province[J]. Journal of East China Normal University (Natural Science), 2011(4): 35−44.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  25
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回