高级检索

    基于遗传算法的绿地地形设计与植物生境优化

    Green space terrain design and plant habitat optimization based on genetic algorithms

    • 摘要:
      目的 针对当前景观地形设计依赖人工、效率低下且与生态数据分析脱节的问题,本研究旨在开发一种自动化、数据驱动的地形优化方法,以精准改善植物生境。
      方法 本研究借助Grasshopper平台建立一种基于遗传算法的数字地形自动优化程序,在植物生境优化导向下对渭河北岸约5.57 hm2场地进行地形设计,以改善其土壤干旱、地形配置单一和生境空间均质化的问题。之后利用SWAT、Fragstats软件进行环境多因子评价和景观格局指数分析,检测优化后植物生境变化情况。
      结果 优化后,地形最大起伏度增加了0.36 m,日均直接辐射持续时间的平均值减少了0.36 h,总辐射的平均值下降了11.53 (kW·h)/m2,平均土壤含水量提高了0.24 mm,生境的多样性和均匀性指标分别提高了0.20和0.11。
      结论 研究表明基于遗传算法的数字地形自动优化程序能快速找到地形参数最优解,且能通过地形的调优定向干预植物生境,实现丰富地形配置、减少太阳直接辐射时长和总辐射量、提升土壤含水率、提高生境的多样性和均匀性等设计目标。研究有利于推动地形设计和生境营造的数智化发展,提高生境营造的效率、准确性与综合性。

       

      Abstract:
      Objective In response to the current problem of landscape terrain design relying on manual labor, low efficiency, and disconnection from ecological data analysis, this paper aims to develop an automated, data-driven terrain optimization method to accurately improve plant habitats.
      Method This study developed an automated digital terrain optimization program based on a genetic algorithm, implemented on the Grasshopper platform. The optimization targeted a 5.57 ha site along the north bank of the Weihe River of northwestern China, focusing on mitigating issues such as arid soil conditions, simplified terrain configurations, and spatial homogenization of plant habitats. Afterwards, SWAT and Fragstats software were used for environmental multi-factor evaluation and landscape pattern index analysis to detect the changes in plant habitat after optimization.
      Result The optimization process resulted in an increase in maximum terrain undulation by 0.36 m, a reduction in the average daily duration of direct incoming solar radiation by 0.36 h, and a decrease in global radiation by 11.53 (kW·h)/m2. Additionally, average soil moisture content increased by 0.24 mm, while the diversity and homogeneity indices of plant habitats improved by 0.20 and 0.11, respectively.
      Conclusion Research findings indicate that the genetic algorithm-based automated digital terrain optimization program can rapidly identify optimal solutions for terrain parameters and achieve key design objectives. These include enriching terrain configurations, reducing direct incoming solar radiation duration and global radiation, enhancing soil moisture content, and improving habitat diversity and homogeneity through targeted terrain interventions. This study contributes to advancing digital intelligence in terrain design and habitat-site design methodologies, enhancing the efficiency, precision and comprehensiveness of habitat optimization efforts.

       

    /

    返回文章
    返回